This work studies a piezoelectric energy harvester subjected to both fluid flow and harmonic excitation. A lumped parameter model that incorporates fluid–structure interaction is presented to analyze the effects of both fluid flow and harmonic excitation on the proposed harvester. The method of implicit mapping is employed to calculate the periodic displacement, voltage, and velocity oscillations. Stabilities and bifurcations of periodic oscillations are determined based on the eigenvalues of the resultant matrix of mapping structures. The displacement and voltage nodes of the proposed energy harvester varying with excitation amplitude and frequency are investigated. The maximum eigenvalue magnitudes are illustrated. Utilizing the periodic nodes of the displacement and voltage, the harmonic amplitudes and phases are calculated using the fast Fourier transform. The harmonic amplitudes of both displacement and voltage varying with excitation frequency are depicted. For the stable periodic responses, the implicit maps and numerical simulations are presented to demonstrate the effectiveness of the energy harvesting system. The theoretical analysis presented in this study can be useful for the design and optimization of the proposed energy harvester.

1.
D.-A.
Wang
and
H.-H.
Ko
, “
Piezoelectric energy harvesting from flow-induced vibration
,”
J. Micromech. Microeng.
20
,
025019
(
2010
).
2.
J.
Wang
,
L.
Geng
,
L.
Ding
,
H.
Zhu
, and
D.
Yurchenko
, “
The state-of-the-art review on energy harvesting from flow-induced vibrations
,”
Appl. Energy
267
,
114902
(
2020
).
3.
V. C.
Sousa
,
M.
de M Anicézio
,
C.
De Marqui
, Jr.
, and
A.
Erturk
, “
Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: Theory and experiment
,”
Smart Mater. Struct.
20
,
094007
(
2011
).
4.
A.
Bibo
,
A.
Abdelkefi
, and
M.
Daqaq
, “
Modeling and characterization of a piezoelectric energy harvester under combined galloping and base excitations
,”
J. Vib. Acoust.
137
(
3
),
031017
(
2015
).
5.
S. Ben
Ayed
,
A.
Abdelkefi
,
F.
Najar
, and
M. R.
Hajj
, “
Design and performance of variable-shaped piezoelectric energy harvesters
,”
J. Intell. Mater. Syst. Struct.
25
(
2
),
174
186
(
2014
).
6.
M.
Zhang
and
J.
Wang
, “
Experimental study on piezoelectric energy harvesting from vortex-induced vibrations and wake-induced vibrations
,”
J. Sens.
2016
,
2673292
(
2016
).
7.
A.
Bibo
and
M. F.
Daqaq
, “
On the optimal performance and universal design curves of galloping energy harvesters
,”
Appl. Phys. Lett.
104
,
023901
(
2014
).
8.
Y.
Yang
,
L.
Zhao
, and
L.
Tang
, “
Comparative study of tip cross-sections for efficient galloping energy harvesting
,”
Appl. Phys. Lett.
102
,
064105
(
2013
).
9.
I.
Haryanto
,
A.
Widodo
,
T.
Prahasto
,
D.
Satrijo
,
I.
Pradiptya
, and
H.
Ouakad
, “
Simulation and analysis of the aeroelastic-galloping-based piezoelectric energy harvester utilizing FEM and CFD
,”
MATEC Web Conf.
159
,
01052
(
2018
).
10.
S. C.
Stanton
,
B. A. M.
Owens
, and
B. P.
Mann
, “
Harmonic balance analysis of the bistable piezoelectric inertial generator
,”
J. Sound Vib.
331
(
15
),
3617
3627
(
2012
).
11.
W.
Sun
and
J.
Seok
, “
Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity
,”
Mech. Syst. Signal Process.
152
,
107477
(
2021
).
12.
Z.
Yan
,
H.
Lei
,
T.
Tan
,
W.
Sun
, and
W.
Huang
, “
Nonlinear analysis for dual-frequency concurrent energy harvesting
,”
Mech. Syst. Signal Process.
104
,
514
535
(
2018
).
13.
L.
Zhao
, “
Analytical solutions for a broadband concurrent aeroelastic and based vibratory energy harvester
,”
Proc. SPIE
10967
,
109671E
(
2019
).
14.
G.
Hu
,
C.
Lan
,
L.
Tang
,
B.
Zhou
, and
Y.
Yang
, “
Dynamics and power limit analysis of a galloping piezoelectric energy harvester under forced excitation
,”
Mech. Syst. Signal Process.
168
,
108724
(
2022
).
15.
M.
Mohammad
,
S. N.
Ali
, and
H. S.
Mohammad
, “
A study on nonlinear, parametric aeroelastic energy harvesters under oscillatory airflow
,”
J. Vib. Control
28
(
1-2
),
192
202
(
2022
).
16.
A. C. J.
Luo
,
Discretization and Implicit Mapping Dynamics
(
Springer Berlin
,
Heidelberg
,
2015
).
17.
A. C. J.
Luo
and
Y.
Guo
, “
A semi-analytical prediction of periodic motions in the duffing oscillator through mapping structures
,”
Interdiscip. J. Discontin. Nonlinear. Complex.
4
(
2
),
121
150
(
2015
).
18.
B.
Yu
and
A. C. J.
Luo
, “
Periodic motions in a single-degree-of-freedom system under both an aerodynamic force and a harmonic excitation
,” in
Proceedings of the IDETC/CIE
,
Anaheim, CA
, 18–21 August (ASME,
2019
), ASME Paper No.: DETC2019-97716, V008T10A026; 6 pages.
19.
B.
Yu
, “
Analytical and experimental analysis of periodic oscillations in a nonlinear temperature control system
,”
J. Vib. Test. Syst. Dyn.
6
(
4
),
373
(
2022
).
20.
S.
Guo
and
A. C. J.
Luo
, “
On infinite homoclinic orbits induced by unstable periodic orbits in the lorenz system
,”
Chaos
31
,
043106
(
2021
).
21.
A.
Erturk
and
D. J.
Inman
, “
A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters
,”
J. Vib. Acoust.
130
(
4
),
041003
(
2008
).
You do not currently have access to this content.