In this paper, for a class of uncertain fractional order chaotic systems with disturbances and partially unmeasurable states, an observer-based event-triggered adaptive fuzzy backstepping synchronization control method is proposed. Fuzzy logic systems are employed to estimate unknown functions in the backstepping procedure. To avoid the explosion of the complexity problem, a fractional order command filter is designed. Simultaneously, in order to reduce the filter error and improve the synchronization accuracy, an effective error compensation mechanism is devised. In particular, a disturbance observer is devised in the case of unmeasurable states, and a state observer is established to estimate the synchronization error of the master–slave system. The designed controller can ensure that the synchronization error converges to a small neighborhood around the origin finally and all signals are semiglobal uniformly ultimately bounded, and meanwhile, it is conducive to avoiding Zeno behavior. Finally, two numerical simulations are given to verify the effectiveness and accuracy of the proposed scheme.

1.
R. L.
Magin
, “
Fractional calculus models of complex dynamics in biological tissues
,”
Comput. Math. Appl.
59
(
5
),
1586
1593
(
2010
).
2.
C. Y.
Kee
,
C.
Chua
,
M.
Zubair
, and
L.
Ang
, “
Fractional modeling of urban growth with memory effects
,”
Chaos
32
(
8
),
083127
(
2022
).
3.
W.
Zheng
,
Y.
Luo
,
Y.
Chen
, and
Y.
Pi
, “
Fractional-order modeling of permanent magnet synchronous motor speed servo system
,”
J. Vibr. Control
22
(
9
),
2255
2280
(
2016
).
4.
C.
Wu
,
G.
Si
,
Y.
Zhang
, and
N.
Yang
, “
The fractional-order state-space averaging modeling of the Buck–Boost DC/DC converter in discontinuous conduction mode and the performance analysis
,”
Nonlinear Dyn.
79
(
1
),
689
703
(
2015
).
5.
E.
Loghman
,
A.
Kamali
,
F.
Bakhtiari-Nejad
, and
M.
Abbaszadeh
, “
Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam
,”
Appl. Math. Modell.
92
,
297
314
(
2021
).
6.
V.
Mohan
,
H.
Chhabra
,
A.
Rani
, and
V.
Singh
, “
An expert 2DOF fractional order fuzzy PID controller for nonlinear systems
,”
Neural Comput. Appl.
31
(
8
),
4253
4270
(
2019
).
7.
X.
Wu
,
H.
Wang
, and
H.
Lu
, “
Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication
,”
Nonlinear Anal.: Real World Appl.
13
(
3
),
1441
1450
(
2012
).
8.
A.
Kiani-B
,
K.
Fallahi
,
N.
Pariz
, and
H.
Leung
, “
A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter
,”
Commun. Nonlinear Sci. Numer. Simul.
14
(
3
),
863
879
(
2009
).
9.
I.
Petráš
, “
The fractional-order Lorenz-type systems: A review
,”
Fract. Calc. Appl. Anal.
25
,
362
377
(
2022
).
10.
M.
Platas-Garza
,
E.
Zambrano-Serrano
,
J.
Rodríguez-Cruz
, and
C.
Posadas-Castillo
, “
Implementation of an encrypted-compressed image wireless transmission scheme based on chaotic fractional-order systems
,”
Chin. J. Phys.
71
,
22
37
(
2021
).
11.
J.
Niu
,
R.
Liu
,
Y.
Shen
, and
S.
Yang
, “
Chaos detection of duffing system with fractional-order derivative by Melnikov method
,”
Chaos
29
(
12
),
123106
(
2019
).
12.
T.
Liu
,
H.
Yan
,
S.
Banerjee
, and
J.
Mou
, “
A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation
,”
Chaos, Solitons Fractals
145
,
110791
(
2021
).
13.
X.
Lin
,
S.
Zhou
,
H.
Tang
,
Y.
Qi
, and
X.
Xie
, “
A novel fractional-order chaotic phase synchronization model for visual selection and shifting
,”
Entropy
20
(
4
),
251
(
2018
).
14.
N.
Cusimano
,
L.
Gerardo-Giorda
, and
A.
Gizzi
, “
A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics
,”
Chaos
31
(
7
),
073123
(
2021
).
15.
S.
Kumar
and
A.
Khan
, “
Controlling and synchronization of chaotic systems via Takagi–Sugeno fuzzy adaptive feedback control techniques
,”
J. Control Autom. Electr. Syst.
32
(
4
),
842
852
(
2021
).
16.
A.
Akgül
,
K.
Rajagopal
,
A.
Durdu
,
M. A.
Pala
,
Ö. F.
Boyraz
, and
M. Z.
Yildiz
, “
A simple fractional-order chaotic system based on memristor and memcapacitor and its synchronization application
,”
Chaos, Solitons Fractals
152
,
111306
(
2021
).
17.
M. K.
Shukla
and
B.
Sharma
, “
Backstepping based stabilization and synchronization of a class of fractional order chaotic systems
,”
Chaos, Solitons Fractals
102
,
274
284
(
2017
).
18.
A.
Razminia
,
V. J.
Majd
, and
D.
Baleanu
, “
Chaotic incommensurate fractional order Rössler system: Active control and synchronization
,”
Adv. Differ. Equ.
2011
(
1
),
1
12
(
2011
).
19.
S.
Bhalekar
and
V.
Daftardar-Gejji
, “
Synchronization of different fractional order chaotic systems using active control
,”
Commun. Nonlinear Sci. Numer. Simul.
15
(
11
),
3536
3546
(
2010
).
20.
S.
Luo
,
F. L.
Lewis
,
Y.
Song
, and
K. G.
Vamvoudakis
, “
Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer
,”
Nonlinear Dyn.
100
(
1
),
523
540
(
2020
).
21.
S.
Ha
,
H.
Liu
,
S.
Li
, and
A.
Liu
, “
Backstepping-based adaptive fuzzy synchronization control for a class of fractional-order chaotic systems with input saturation
,”
Int. J. Fuzzy Syst.
21
(
5
),
1571
1584
(
2019
).
22.
S.
Das
and
V. K.
Yadav
, “
Chaos control and function projective synchronization of fractional-order systems through the backstepping method
,”
Theor. Math. Phys.
189
(
1
),
1430
1439
(
2016
).
23.
Y.
Pan
,
H.
Wang
,
X.
Li
, and
H.
Yu
, “
Adaptive command-filtered backstepping control of robot arms with compliant actuators
,”
IEEE Trans. Control Syst. Technol.
26
(
3
),
1149
1156
(
2017
).
24.
S.
Ha
,
L.
Chen
, and
H.
Liu
, “
Command filtered adaptive neural network synchronization control of fractional-order chaotic systems subject to unknown dead zones
,”
J. Franklin Inst.
358
(
7
),
3376
3402
(
2021
).
25.
Y.
Li
and
S.
Tong
, “
Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems
,”
IEEE Trans. Fuzzy Syst.
25
(
3
),
668
681
(
2016
).
26.
S.
Lu
,
X.
Wang
, and
Y.
Li
, “
Adaptive neural network finite-time command filtered tracking control of fractional-order permanent magnet synchronous motor with input saturation
,”
J. Franklin Inst.
357
(
18
),
13707
13733
(
2020
).
27.
S.
Han
, “
Fractional-order command filtered backstepping sliding mode control with fractional-order nonlinear disturbance observer for nonlinear systems
,”
J. Franklin Inst.
357
(
11
),
6760
6776
(
2020
).
28.
H.
Liu
,
Y.
Pan
,
J.
Cao
,
H.
Wang
, and
Y.
Zhou
, “
Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults
,”
IEEE Trans. Neural Networks Learn. Syst.
31
(
12
),
5166
5177
(
2020
).
29.
Y.
Zhao
,
W.
Zhang
,
H.
Su
, and
J.
Yang
, “
Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication
,”
IEEE Trans. Syst. Man Cybern.: Syst.
50
(
12
),
5221
5232
(
2018
).
30.
A.
Mohammadzadeh
,
S.
Ghaemi
,
O.
Kaynak
, and
S.
Khanmohammadi
, “
Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system
,”
Appl. Soft Comput.
49
,
544
560
(
2016
).
31.
Z.
Li
,
T.
Xia
, and
C.
Jiang
, “
Synchronization of fractional-order complex chaotic systems based on observers
,”
Entropy
21
(
5
),
481
(
2019
).
32.
T.-L.
Liao
and
N.-S.
Huang
, “
An observer-based approach for chaotic synchronization with applications to secure communications
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
46
(
9
),
1144
1150
(
1999
).
33.
M.
Boutayeb
,
M.
Darouach
, and
H.
Rafaralahy
, “
Generalized state-space observers for chaotic synchronization and secure communication
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
49
(
3
),
345
349
(
2002
).
34.
C.
Zhou
,
C.
Wang
,
W.
Yao
, and
H.
Lin
, “
Observer-based synchronization of memristive neural networks under dos attacks and actuator saturation and its application to image encryption
,”
Appl. Math. Comput.
425
,
127080
(
2022
).
35.
J.
Yang
,
Y.
Wang
,
F.
Deng
,
T.
Wang
,
S.
Sui
,
X.
Yang
, and
Y.
Liu
, “
Observer-based adaptive fuzzy control for nonlinear fractional-order systems via backstepping and sliding mode techniques
,”
Int. J. Fuzzy Syst.
24
,
3650
3665
(
2022
).
36.
B.
Guo
,
S.
Dian
, and
T.
Zhao
, “
Active event-driven reliable defense control for interconnected nonlinear systems under actuator faults and denial-of-service attacks
,”
Sci. China Inf. Sci.
65
(
6
),
1
17
(
2022
).
37.
S.
Li
,
C. K.
Ahn
,
J.
Guo
, and
Z.
Xiang
, “
Neural-network approximation-based adaptive periodic event-triggered output-feedback control of switched nonlinear systems
,”
IEEE Trans. Cybern.
51
(
8
),
4011
4020
(
2020
).
38.
Y.
Pan
,
Y.
Wu
, and
H.-K.
Lam
, “
Security-based fuzzy control for nonlinear networked control systems with dos attacks via a resilient event-triggered scheme
,”
IEEE Trans. Fuzzy Syst.
30
,
4359
4368
(
2022
).
39.
H.
Liang
,
G.
Liu
,
H.
Zhang
, and
T.
Huang
, “
Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties
,”
IEEE Trans. Neural Networks Learn. Syst.
32
(
5
),
2239
2250
(
2020
).
40.
C.-H.
Zhang
and
G.-H.
Yang
, “
Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures
,”
IEEE Trans. Cybern.
50
(
1
),
201
210
(
2018
).
41.
L.
Liu
,
Y.
Cui
,
Y.-J.
Liu
, and
S.
Tong
, “
Adaptive event-triggered output feedback control for nonlinear switched systems based on full state constraints
,”
IEEE Trans. Circuits Syst. II: Express Briefs
69
,
3779
3783
(
2022
).
42.
S.
Kang
,
H.
Wang
,
M.
Chen
,
P. X.
Liu
, and
C.
Li
, “
Event-triggered adaptive backstepping tracking control for a class of nonlinear fractional order systems
,”
Int. J. Adapt. Control Signal Process.
35
(
4
),
442
458
(
2021
).
43.
M.
Wei
,
Y.-X.
Li
, and
S.
Tong
, “
Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints
,”
Neurocomputing
412
,
320
326
(
2020
).
44.
L.
Xing
,
C.
Wen
,
Z.
Liu
,
H.
Su
, and
J.
Cai
, “
Event-triggered adaptive control for a class of uncertain nonlinear systems
,”
IEEE Trans. Autom. Control
62
(
4
),
2071
2076
(
2016
).
45.
S.
Luo
,
S.
Li
,
F.
Tajaddodianfar
, and
J.
Hu
, “
Observer-based adaptive stabilization of the fractional-order chaotic mems resonator
,”
Nonlinear Dyn.
92
(
3
),
1079
1089
(
2018
).
46.
B.
Cao
and
X.
Nie
, “
Event-triggered adaptive neural networks control for fractional-order nonstrict-feedback nonlinear systems with unmodeled dynamics and input saturation
,”
Neural Networks
142
,
288
302
(
2021
).
47.
X.
You
,
M.
Shi
,
B.
Guo
,
Y.
Zhu
,
W.
Lai
,
S.
Dian
, and
K.
Liu
, “
Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance
,”
Chaos, Solitons Fractals
161
,
112393
(
2022
).
48.
I.
Petráš
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
(
Springer Science & Business Media
,
2011
).
49.
C.
Li
and
W.
Deng
, “
Remarks on fractional derivatives
,”
Appl. Math. Comput.
187
(
2
),
777
784
(
2007
).
50.
Y.
Li
,
Y.
Chen
, and
I.
Podlubny
, “
Mittag–Leffler stability of fractional order nonlinear dynamic systems
,”
Automatica
45
(
8
),
1965
1969
(
2009
).
51.
W.
Deng
and
C.
Li
, “
Synchronization of chaotic fractional Chen system
,”
J. Phys. Soc. Jpn.
74
(
6
),
1645
1648
(
2005
).
52.
K.
Rabah
and
S.
Ladaci
, “
A fractional adaptive sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems
,”
Circuits Syst. Signal Process.
39
(
3
),
1244
1264
(
2020
).
53.
A.
Khan
and
U.
Nigar
, “
Sliding mode disturbance observer control based on adaptive hybrid projective compound combination synchronization in fractional-order chaotic systems
,”
J. Control Autom. Electr. Syst.
31
(
4
),
885
899
(
2020
).
54.
H.
Han
,
J.
Chen
, and
H. R.
Karimi
, “
State and disturbance observers-based polynomial fuzzy controller
,”
Inf. Sci.
382–383
,
38
59
(
2017
).
You do not currently have access to this content.