Epidemic spreading processes on dynamic multiplex networks provide a more accurate description of natural spreading processes than those on single layered networks. To describe the influence of different individuals in the awareness layer on epidemic spreading, we propose a two-layer network-based epidemic spreading model, including some individuals who neglect the epidemic, and we explore how individuals with different properties in the awareness layer will affect the spread of epidemics. The two-layer network model is divided into an information transmission layer and a disease spreading layer. Each node in the layer represents an individual with different connections in different layers. Individuals with awareness will be infected with a lower probability compared to unaware individuals, which corresponds to the various epidemic prevention measures in real life. We adopt the micro-Markov chain approach to analytically derive the threshold for the proposed epidemic model, which demonstrates that the awareness layer affects the threshold of disease spreading. We then explore how individuals with different properties would affect the disease spreading process through extensive Monte Carlo numerical simulations. We find that individuals with high centrality in the awareness layer would significantly inhibit the transmission of infectious diseases. Additionally, we propose conjectures and explanations for the approximately linear effect of individuals with low centrality in the awareness layer on the number of infected individuals.

1.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. Lond. Ser. A
115
,
700
721
(
1927
).
2.
M. J.
Keeling
and
K. T.
Eames
, “
Networks and epidemic models
,”
J. R. Soc. Interface
2
,
295
307
(
2005
).
3.
I. Z.
Kiss
,
D. M.
Green
, and
R. R.
Kao
, “
The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing
,”
J. R. Soc. Interface
5
,
791
799
(
2008
).
4.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
(
2015
).
5.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic dynamics and endemic states in complex networks
,”
Phys. Rev. E
63
,
066117
(
2001
).
6.
A.
Saumell-Mendiola
,
M.
Á. Serrano
, and
M.
Boguná
, “
Epidemic spreading on interconnected networks
,”
Phys. Rev. E
86
,
026106
(
2012
).
7.
C.
Stegehuis
,
R.
Van Der Hofstad
, and
J. S.
Van Leeuwaarden
, “
Epidemic spreading on complex networks with community structures
,”
Sci. Rep.
6
,
29748
(
2016
).
8.
C.-R.
Cai
,
Z.-X.
Wu
,
M. Z.
Chen
,
P.
Holme
, and
J.-Y.
Guan
, “
Solving the dynamic correlation problem of the susceptible-infected-susceptible model on networks
,”
Phys. Rev. Lett.
116
,
258301
(
2016
).
9.
M.
Jusup
,
P.
Holme
,
K.
Kanazawa
,
M.
Takayasu
,
I.
Romić
,
Z.
Wang
,
S.
Geček
,
T.
Lipić
,
B.
Podobnik
,
L.
Wang
et al., “
Social physics
,”
Phys. Rep.
948
,
1
148
(
2022
).
10.
W.
Li
,
M.
Cai
,
X.
Zhong
,
Y.
Liu
,
T.
Lin
, and
W.
Wang
, “
Coevolution of epidemic and infodemic on higher-order networks
,”
Chaos, Solitons Fractals
168
,
113102
(
2023
).
11.
Y.
Nie
,
W.
Li
,
L.
Pan
,
T.
Lin
, and
W.
Wang
, “
Markovian approach to tackle competing pathogens in simplicial complex
,”
Appl. Math. Comput.
417
,
126773
(
2022
).
12.
M.
Salehi
,
R.
Sharma
,
M.
Marzolla
,
M.
Magnani
,
P.
Siyari
, and
D.
Montesi
, “
Spreading processes in multilayer networks
,”
IEEE Trans. Netw. Sci. Eng.
2
,
65
83
(
2015
).
13.
Y.
Li
,
Z.
Zeng
,
M.
Feng
, and
J.
Kurths
, “
Protection degree and migration in the stochastic SIRS model: A queueing system perspective
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
69
,
771
783
(
2021
).
14.
Y.
Li
,
B.
Pi
, and
M.
Feng
, “
Limited resource network modeling and its opinion diffusion dynamics
,”
Chaos
32
,
043108
(
2022
).
15.
C.
Buono
,
L. G.
Alvarez-Zuzek
,
P. A.
Macri
, and
L. A.
Braunstein
, “
Epidemics in partially overlapped multiplex networks
,”
PLoS One
9
,
e92200
(
2014
).
16.
G. F.
de Arruda
,
F. A.
Rodrigues
, and
Y.
Moreno
, “
Fundamentals of spreading processes in single and multilayer complex networks
,”
Phys. Rep.
756
,
1
59
(
2018
).
17.
X.-X.
Zhan
,
C.
Liu
,
G.-Q.
Sun
, and
Z.-K.
Zhang
, “
Epidemic dynamics on information-driven adaptive networks
,”
Chaos, Solitons Fractals
108
,
196
204
(
2018
).
18.
X.
Hong
,
Y.
Han
,
G.
Tanaka
, and
B.
Wang
, “
Co-evolution dynamics of epidemic and information under dynamical multi-source information and behavioral responses
,”
Knowl.-Based Syst.
252
,
109413
(
2022
).
19.
J.
Jiang
and
T.
Zhou
, “
Resource control of epidemic spreading through a multilayer network
,”
Sci. Rep.
8
,
1629
(
2018
).
20.
Q.
Sun
,
Z.
Wang
,
D.
Zhao
,
C.
Xia
, and
M.
Perc
, “
Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes
,”
Chaos, Solitons Fractals
164
,
112734
(
2022
).
21.
H.
Guo
,
Z.
Wang
,
S.
Sun
, and
C.
Xia
, “
Interplay between epidemic spread and information diffusion on two-layered networks with partial mapping
,”
Phys. Lett. A
398
,
127282
(
2021
).
22.
W.
Wang
,
M.
Tang
,
H.
Yang
,
Y.
Do
,
Y.-C.
Lai
, and
G.
Lee
, “
Asymmetrically interacting spreading dynamics on complex layered networks
,”
Sci. Rep.
4
,
5097
(
2014
).
23.
Z.
Ruan
,
M.
Tang
, and
Z.
Liu
, “
Epidemic spreading with information-driven vaccination
,”
Phys. Rev. E
86
,
036117
(
2012
).
24.
J.
Fan
,
Q.
Yin
,
C.
Xia
, and
M.
Perc
, “
Epidemics on multilayer simplicial complexes
,”
Proc. R. Soc. A
478
,
20220059
(
2022
).
25.
H.-J.
Li
,
W.
Xu
,
S.
Song
,
W.-X.
Wang
, and
M.
Perc
, “
The dynamics of epidemic spreading on signed networks
,”
Chaos, Solitons Fractals
151
,
111294
(
2021
).
26.
K.
Kabir
,
T.
Risa
, and
J.
Tanimoto
, “
Prosocial behavior of wearing a mask during an epidemic: An evolutionary explanation
,”
Sci. Rep.
11
,
12621
(
2021
).
27.
G.
Shrivastava
,
P.
Kumar
,
R. P.
Ojha
,
P. K.
Srivastava
,
S.
Mohan
, and
G.
Srivastava
, “
Defensive modeling of fake news through online social networks
,”
IEEE Trans. Comput. Soc. Syst.
7
,
1159
1167
(
2020
).
You do not currently have access to this content.