We conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times inside a chain recurrent set. Based on this analysis, together with the information on the size of the chain recurrent set, we develop a new method that allows one to determine subsets of parameters for which chaotic dynamics may appear. This approach can be applied to a variety of dynamical systems, and we discuss some of its practical aspects.

1.
Z.
Arai
,
W.
Kalies
,
H.
Kokubu
,
K.
Mischaikow
,
H.
Oka
, and
P.
Pilarczyk
, “
A database schema for the analysis of global dynamics of multiparameter systems
,”
SIAM J. Appl. Dyn. Syst.
8
,
757
789
(
2009
).
2.
H.
Ban
and
W.
Kalies
, “
A computational approach to Conley’s decomposition theorem
,”
J. Comput. Nonlinear Dyn.
1
,
312
319
(
2006
).
3.
R.
Brette
and
W.
Gerstner
, “
Adaptive exponential integrate-and-fire model as an effective description of neuronal activity
,”
J. Neurophysiol.
94
,
3637
3642
(
2005
).
4.
A. N.
Burkitt
, “
A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input
,”
Biol. Cybern.
95
,
1
19
(
2006
).
5.
D.
Chialvo
, “
Generic excitable dynamics on a two-dimensional map
,”
Chaos, Solitons Fractals
5
,
461
479
(
1995
).
6.
See https://www.pawelpilarczyk.com/chomp/ for “Computational Homology Project” (accessed January 13, 2023).
7.
Computer Assisted Proofs in Dynamics Group; see http://capd.ii.uj.edu.pl/ (accessed January 13, 2023).
8.
C.
Conley
, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics Vol. 38 (American Mathematical Society, Providence, RI, 1978).
9.
M.
Courbage
and
V. I.
Nekorkin
, “
Map based models in neurodynamics
,”
Int. J. Bifur. Chaos Appl. Sci. Eng.
20
,
1631
1651
(
2010
).
10.
M.
Dellnitz
,
G.
Froyland
, and
O.
Junge
, “The algorithms behind GAIO—Set oriented numerical methods for dynamical systems,” in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, edited by B. Fiedler (Springer-Verlag, New York, 2001), pp. 145–174.
11.
M.
Hénon
, “
A two-dimensional mapping with a strange attractor
,”
Commun. Math. Phys.
50
,
69
77
(
1976
).
12.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its application to conduction and excitation in nerve
,”
J. Physiol.
117
,
500
544
(
1952
).
13.
B.
Ibarz
,
J. M.
Casado
, and
M. A. F.
Sanjuán
, “
Map-based models in neuronal dynamics
,”
Phys. Rep.
501
,
1
74
(
2011
).
14.
E.
Izhikevich
, “
Simple model of spiking neurons
,”
IEEE Trans. Neural Netw.
14
,
1569
1572
(
2003
).
15.
Z.
Jing
,
J.
Yang
, and
W.
Feng
, “
Bifurcation and chaos in neural excitable system
,”
Chaos, Solitons Fractals
27
,
197
215
(
2006
).
16.
T.
Kaczynski
,
K.
Mischaikow
, and
M.
Mrozek
, Computational Homology, Applied Mathematical Sciences Vol. 157 (Springer-Verlag, New York, 2004).
17.
W. D.
Kalies
,
K.
Mischaikow
, and
R. C. A. M.
VanderVorst
, “
An algorithmic approach to chain recurrence
,”
Found. Comput. Math.
5
,
409
449
(
2005
).
18.
T.
Kapela
,
M.
Mrozek
,
D.
Wilczak
, and
P.
Zgliczynski
, “
CAPD::DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
101
,
105578
(
2021
).
19.
D. H.
Knipl
,
P.
Pilarczyk
, and
G.
Röst
, “
Rich bifurcation structure in a two-patch vaccination model
,”
SIAM J. Appl. Dyn. Syst.
14
,
980
1017
(
2015
).
20.
K.-L.
Liao
,
C.-W.
Shih
, and
C.-J.
Yu
, “
The snapback repellers for chaos in multi-dimensional maps
,”
J. Comput. Dyn.
5
(
1–2
),
81
92
(
2018
).
21.
F.
Llovera Trujillo
,
J.
Signerska-Rynkowska
, and
P.
Bartłomiejczyk
, “Periodic and chaotic dynamics in a map-based neuron model,”
Math Meth Appl Sci.
(published online, 2023).
22.
N.
Marwan
and
C. L.
Webber
, “Mathematical and computational foundations of recurrence quantifications,” in Recurrence Quantification Analysis. Understanding Complex Systems, edited by C. Webber, Jr. and N. Marwan (Springer, Cham, 2015).
23.
J.
Milnor
, “
On the concept of attractor
,”
Commun. Math. Phys.
99
,
177
195
(
1985
).
24.
K.
Mischaikow
,
M.
Mrozek
, and
P.
Pilarczyk
, “
Graph approach to the computation of the homology of continuous maps
,”
Found. Comput. Math.
5
,
199
229
(
2005
).
26.
P.
Pilarczyk
, “
Parallelization method for a continuous property
,”
Found. Comput. Math.
10
,
93
114
(
2010
).
27.
P.
Pilarczyk
, “Topological-numerical analysis of a two-dimensional discrete neuron model,” Data and software (2022); see http://www.pawelpilarczyk.com/neuron/ (accessed January 13, 2023).
28.
P.
Pilarczyk
and
P.
Real
, “
Computation of cubical homology, cohomology, and (co)homological operations via chain contraction
,”
Adv. Comput. Math.
41
,
253
275
(
2015
).
29.
P.
Pilarczyk
and
K.
Stolot
, “
Excision-preserving cubical approach to the algorithmic computation of the discrete Conley index
,”
Topol. Appl.
155
,
1149
1162
(
2008
).
30.
J. E.
Rubin
,
J.
Signerska-Rynkowska
,
J.
Touboul
, and
A.
Vidal
, “
Wild oscillations in a nonlinear neuron model with resets: (I) Bursting, spike-adding, and chaos
,”
Discrete Contin. Dyn. Syst. Ser. B
22
,
3967
4002
(
2017
).
31.
J. E.
Rubin
,
J.
Signerska-Rynkowska
, and
J.
Touboul
, “
Type III responses to transient inputs in hybrid nonlinear neuron models
,”
SIAM J. Appl. Dyn. Syst.
20
,
953
980
(
2021
).
32.
N. F.
Rulkov
, “
Regularization of synchronized chaotic bursts
,”
Phys. Rev. Lett.
86
,
183
186
(
2001
).
33.
N. F.
Rulkov
, “
Modeling of spiking-bursting neural behaviour using two-dimensional map
,”
Phys. Rev. E
65
,
041922
(
2002
).
34.
A. L.
Shilnikov
and
N. F.
Rulkov
, “
Subthreshold oscillations in a map-based neuron model
,”
Phys. Lett. A
328
,
177
184
(
2004
).
35.
J.
Signerska-Rynkowska
, “
Analysis of interspike-intervals for the general class of integrate-and-fire models with periodic drive
,”
Math. Model. Anal.
20
,
529
551
(
2015
).
36.
A.
Szymczak
, “
The Conley index for discrete semidynamical systems
,”
Topol. Appl.
66
,
215
240
(
1995
).
37.
N.
Torres
,
M. J.
Cáceres
,
B.
Perthame
, and
D.
Salort
, “
An elapsed time model for strongly coupled inhibitory and excitatory neural networks
,”
Physica D
425
,
132977
(
2021
).
38.
J.
Touboul
and
R.
Brette
, “
Spiking dynamics of bidimensional integrate-and-fire neurons
,”
SIAM J. Appl. Dyn. Syst.
8
,
1462
1506
(
2009
).
39.
Encyclopedia of Mathematics, “Vitali Variation”; see http://encyclopediaofmath.org/index.php?title=Vitali_variation&oldid=44408 (accessed January 13, 2023).
40.
F.
Wang
and
H.
Cao
, “
Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model
,”
Commun. Nonlinear Sci. Numer. Simul.
56
,
481
489
(
2018
).
41.
Y.
Zhao
,
L.
Xie
, and
K. F. C.
Lingli
, “
An improvement on Marotto’s theorem and its applications to chaotification of switching systems
,”
Chaos, Solitons Fractals
39
(
5
),
2225
2232
(
2009
).
You do not currently have access to this content.