In order to describe the sensitivity of a cellular automaton (CA) to a small change in its initial configuration, one can attempt to extend the notion of Lyapunov exponents as defined for continuous dynamical systems to a CA. So far, such attempts have been limited to a CA with two states. This poses a significant limitation on their applicability, as many CA-based models rely on three or more states. In this paper, we generalize the existing approach to an arbitrary N-dimensional k-state CA with either a deterministic or probabilistic update rule. Our proposed extension establishes a distinction between different kinds of defects that can propagate, as well as the direction in which they propagate. Furthermore, in order to arrive at a comprehensive insight into CA’s stability, we introduce additional concepts, such as the average Lyapunov exponent and the correlation coefficient of the difference pattern growth. We illustrate our approach for some interesting three-state and four-state rules, as well as a CA-based forest-fire model. In addition to making the existing methods generally applicable, our extension makes it possible to identify some behavioral features that allow us to distinguish a Class IV CA from a Class III CA (according to Wolfram’s classification), which has been proven to be difficult.

1.
J. M.
Baetens
and
J.
Gravner
, “
Introducing Lyapunov profiles of cellular automata
,”
J. Cell. Autom.
13
,
267
(
2018
).
2.
F.
Bagnoli
,
R.
Rechtman
, and
S.
Ruffo
, “
Damage spreading and Lyapunov exponents in cellular automata
,”
Phys. Lett. A
172
,
34
38
(
1992
).
3.
M.
Courbage
and
B.
Kaminski
, “
Space-time directional Lyapunov exponents for cellular automata
,”
J. Stat. Phys.
124
,
1499
1509
(
2006
).
4.
M. A.
Shereshevsky
, “
Lyapunov exponents for one-dimensional cellular automata
,”
J. Nonlinear Sci.
2
,
1
8
(
1992
).
5.
P.
Tisseur
, “
Cellular automata and Lyapunov exponents
,”
Nonlinearity
13
,
1547
1560
(
2000
).
6.
S.
Wolfram
, “
Universality and complexity in cellular automata
,”
Physica D
10
,
1
35
(
1984
).
7.
K.
Bhattacharjee
,
N.
Naskar
,
S.
Roy
, and
S.
Das
, “
A survey of cellular automata: Types, dynamics, non-uniformity and applications
,”
Nat. Comput.
19
,
38
40
(
2020
).
8.
J.-C.
Dubacq
,
B.
Durand
, and
E.
Formenti
, “
Kolmogorov complexity and cellular automata classification
,”
Theor. Comput. Sci.
259
,
271
285
(
2001
).
9.
C. G.
Langton
, “
Computation at the edge of chaos: Phase transitions and emergent computation
,”
Physica D
42
,
12
37
(
1990
).
10.
M.
Vispoel
,
A. J.
Daly
, and
J. M.
Baetens
, “
Progress, gaps and obstacles in the classification of cellular automata
,”
Physica D
432
,
133074
(
2022
).
11.
A.
Wuensche
, “
Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter
,”
Complexity
432
,
133074
(
1999
).
12.
J. P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
656
(
1985
).
13.
V. I.
Oseledets
, “
A multiplicative ergodic theorem. Characteristic Lyapunov, exponents of dynamical systems
,”
Trans. Moscow Math. Soc.
19
,
179
210
(
1968
).
14.
J.
Vallejo
and
M.
Sanjuán
,
Predictability of Chaotic Dynamics: A Finite-Time Lyapunov Exponents Approach
(
Springer International Publishing
,
2019
).
15.
F.
Bagnoli
and
R.
Rechtman
, “
Synchronization and maximum Lyapunov exponents of cellular automata
,”
Phys. Rev. E
59
,
R1307
R1310
(
1999
).
16.
F.
Bagnoli
and
R.
Rechtman
, “
Thermodynamic entropy and chaos in a discrete hydrodynamical system
,”
Phys. Rev. E
79
,
041115
(
2009
).
17.
B.
Pfeifer
,
K. G.
Kugler
,
M. M.
Tejada
,
C.
Baumgartner
,
M.
Seger
,
M.
Osl
,
M.
Netzer
,
M.
Handler
,
A.
Dander
,
M.
Wurz
,
A.
Graber
, and
B.
Tilg
, “
A cellular automaton framework for infectious disease spread simulation
,”
Open Med. Inf. J.
2
,
70
81
(
2008
).
18.
M.
Markus
and
B.
Hess
, “
Isotropic cellular automaton for modelling excitable media
,”
Nature
347
,
56
58
(
1990
).
19.
L.
Reyes
and
D.
Laroze
, “
Cellular automata for excitable media on a complex network: The effect of network disorder in the collective dynamics
,”
Physica A
588
,
126552
(
2022
).
20.
K.
Mutthulakshmi
,
M. R.
En Wee
,
Y. C.
Kester Wong
,
J. W.
Lai
,
J. M.
Koh
,
U.
Rajendra Acharya
, and
K. H.
Cheong
, “
Simulating forest fire spread and fire-fighting using cellular automata
,”
Chin. J. Phys.
65
,
642
650
(
2020
).
21.
G.
Vichniac
, “
Boolean derivatives on cellular automata
,”
Physica D
45
,
63
74
(
1990
).
22.
C. R.
Shalizi
,
R.
Haslinger
,
J.
Rouquier
,
K. L.
Klinkner
, and
C.
Moore
, “
Automatic filters for the detection of coherent structure in spatiotemporal systems
,”
Phys. Rev. E
73
,
036104
(
2006
).
23.
P.
Frederickson
,
J. L.
Kaplan
,
E. D.
Yorke
, and
J. A.
Yorke
, “
The Lyapunov dimension of strange attractors
,”
J. Differ. Equ.
49
(
2
),
185
207
(
1983
).
24.
G. A.
Leonov
and
N. V.
Kuznetsov
, “
Time-varying linearization and the Perron effects
,”
Int. J. Bifurcation Chaos
17
,
1079
1107
(
2007
).
25.
S.
Ninagawa
, “
Power spectral analysis of elementary cellular automata
,”
Complex Syst.
17
,
399
411
(
2008
).
You do not currently have access to this content.