Physics-informed neural networks (PiNNs) recently emerged as a powerful solver for a large class of partial differential equations (PDEs) under various initial and boundary conditions. In this paper, we propose trapz-PiNNs, physics-informed neural networks incorporated with a modified trapezoidal rule recently developed for accurately evaluating fractional Laplacian and solve the space-fractional Fokker–Planck equations in 2D and 3D. We describe the modified trapezoidal rule in detail and verify the second-order accuracy. We demonstrate that trapz-PiNNs have high expressive power through predicting the solution with low L 2 relative error by a variety of numerical examples. We also use local metrics, such as point-wise absolute and relative errors, to analyze where it could be further improved. We present an effective method for improving the performance of trapz-PiNN on local metrics, provided that physical observations or high-fidelity simulation of the true solution are available. The trapz-PiNN is able to solve PDEs with fractional Laplacian with arbitrary α ∈ ( 0 , 2 ) and on rectangular domains. It also has the potential to be generalized into higher dimensions or other bounded domains.

1.
J.
Duan
, “An introduction to stochastic dynamics,” in Cambridge Texts in Applied Mathematics (Cambridge University Press, 2015).
2.
P.
Ditlevsen
, “Observation of alpha-stable noise induced millennial climate changes from an ice-core record,”
Geophys. Res. Lett
.
26
(
10
),
1441
1444
, https://doi.org/10.1029/1999GL900252 (
1999
).
3.
X.
Shen
,
H.
Zhang
,
Y.
Xu
, and
S.
Meng
, “
Observation of alpha-stable noise in the laser gyroscope data
,”
IEEE Sens. J.
16
(
7
),
1998
2003
(
2016
).
4.
J.
Roberts
,
T.
Boonstra
, and
M.
Breakspear
, “
The heavy tail of the human brain
,”
Curr. Opin. Neurobiol.
31
,
164
172
(
2015
).
5.
D.
Applebaum
, “Lévy processes and stochastic calculus,” in Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2004).
6.
Z.
Chen
,
M.
Meerschaert
, and
E.
Nane
, “
Space–time fractional diffusion on bounded domains
,”
J. Math. Anal. Appl.
393
(
2
),
479
488
(
2012
).
7.
T.
Gao
,
J.
Duan
, and
X.
Li
, “
Fokker-Planck equations for stochastic dynamical systems with symmetric Lévy motions
,”
Appl. Math. Comput.
278
,
1
20
(
2016
).
8.
H.
Ha
, “Non-Gaussian stochastic dynamics with deterministic numerical tools,” Ph.D. thesis Illinois Institute of Technology, 2016.
9.
J.
He
,
J.
Duan
, and
H.
Gao
, “
A nonlocal Fokker-Planck equation for non-Gaussian stochastic dynamical systems
,”
Appl. Math. Lett.
49
,
1
6
(
2015
).
10.
A.
Lischke
,
G.
Pang
,
M.
Gulian
,
F.
Song
,
C.
Glusa
,
X.
Zheng
,
Z.
Mao
,
W.
Cai
,
M.
Meerschaert
,
M.
Ainsworth
, and
G.
Karniadakis
, “
What is the fractional Laplacian? A comparative review with new results
,”
J. Comput. Phys.
404
,
109009
(
2020
).
11.
M.
Ainsworth
and
C.
Glusa
, “Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains,” in Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan (Springer International Publishing, Cham, Switzerland, 2018), pp. 17–57.
12.
H.
Liu
,
C.
Sheng
,
L.
Wang
, and
H.
Yuan
, “
On diagonal dominance of FEM stiffness matrix of fractional Laplacian and maximum principle preserving schemes for the fractional Allen–Cahn equation
,”
J. Sci. Comput.
86
,
1
28
(
2021
).
13.
A.
Kyprianou
,
A.
Osojnik
, and
T.
Shardlow
, “
Unbiased “walk-on-spheres” Monte Carlo methods for the fractional Laplacian
,”
IMA J. Numer. Anal.
38
(
3
),
1550
1578
(
2017
).
14.
S.
Duo
and
Y.
Zhang
, “
Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications
,”
Comput. Methods Appl. Mech. Eng.
355
,
639
662
(
2019
).
15.
S.
Jiang
and
X.
Li
, “
Arbitrarily high-order trapezoidal rules for functions with fractional singularities in two dimensions
,”
Appl. Math. Comput.
429
,
127236
(
2022
).
16.
S.
Jiang
and
X.
Li
, “A modified trapezoidal rule for a class of weakly singular integrals in n dimensions,” arXiv:2208.09753 (2022).
17.
J.
Sirignano
and
K.
Spiliopoulos
, “
DGM: A deep learning algorithm for solving partial differential equations
,”
J. Comput. Phys.
375
,
1339
1364
(
2018
).
18.
J.
Han
,
A.
Jentzen
, and
E.
Weinan
, “
Solving high-dimensional partial differential equations using deep learning
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
34
),
8505
8510
(
2018
).
19.
M.
Raissi
,
P.
Perdikaris
, and
G.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
20.
G.
Pang
,
M.
D’Elia
,
M.
Parks
, and
G.
Karniadakis
, “
nPiNNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications
,”
J. Comput. Phys.
422
,
109760
(
2020
).
21.
G.
Pang
,
L.
Lu
, and
G.
Karniadakis
, “
fPiNNs: Fractional physics-informed neural networks
,”
SIAM J. Sci. Comput.
41
(
4
),
A2603
A2626
(
2019
).
22.
D.
Zhang
,
L.
Guo
, and
G.
Karniadakis
, “
Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed neural networks
,”
SIAM J. Sci. Comput.
42
(
2
),
A639
A665
(
2020
).
23.
Y.
Xu
,
H.
Zhang
,
Y.
Li
,
K.
Zhou
,
Q.
Liu
, and
J.
Kurths
, “
Solving Fokker-Planck equation using deep learning
,”
Chaos
30
(
1
),
013133
(
2020
).
24.
L.
Guo
,
H.
Wu
,
X.
Yu
, and
T.
Zhou
, “Monte Carlo PINNs: Deep learning approach for forward and inverse problems involving high dimensional fractional partial differential equations,” arXiv:2203.08501 (2022).
25.
L.
Yuan
,
Y.
Ni
,
X.
Deng
, and
S.
Hao
, “
A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations
,”
J. Comput. Phys.
462
,
111260
(
2022
).
26.
J.
Li
and
B.
Li
, “
Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized-symmetric Scarf-II potential via PINN deep learning
,”
Commun. Theor. Phys.
73
(
12
),
125001
(
2021
).
27.
A.
Jagtap
,
E.
Kharazmi
, and
G.
Karniadakis
, “
Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
,”
Comput. Methods Appl. Mech. Eng.
365
,
113028
(
2020
).
28.
T.
Kadeethum
,
T.
Jørgensen
, and
H.
Nick
, “Physics-informed neural networks for solving inverse problems of nonlinear Biot’s equations: Batch training,” in 54th US Rock Mechanics/Geomechanics Symposium (OnePetro, 2020).
29.
S.
Mishra
and
R.
Molinaro
, “
Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs
,”
IMA J. Numer. Anal.
42
(
2
),
981
1022
(
2022
).
30.
X.
Feng
,
L.
Zeng
, and
T.
Zhou
, “Solving time dependent Fokker-Planck equations via temporal normalizing flow,” arXiv:2112.14012 (2021).
31.
K.
Tang
,
X.
Wan
, and
Q.
Liao
, “
Adaptive deep density approximation for Fokker-Planck equations
,”
J. Comput. Phys.
457
,
111080
(
2022
).
32.
A.
Zhang
,
Z.
Lipton
,
M.
Li
, and
A.
Smola
, “Dive into deep learning,” arXiv:2106.11342 (2021).
33.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Netw.
4
(
2
),
251
257
(
1991
).
34.
P.
Kidger
and
T.
Lyons
, “Universal approximation with deep narrow networks,” in Conference on Learning Theory (PMLR, 2020), pp. 2306–2327.
35.
A.
Griewank
and
A.
Walther
,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
,
2nd ed.
(
Society for Industrial and Applied Mathematics
,
2008
).
36.
D.
Kingma
and
J.
Ba
, “Adam: A method for stochastic optimization,” arXiv:1412.6980 (2014).
37.
X.
Glorot
and
Y.
Bengio
, “Understanding the difficulty of training deep feedforward neural networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (PMLR, 2010), Vol. 9, pp. 249–256.
38.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M.
Johnson
,
C.
Leary
,
D.
Maclaurin
,
G.
Necula
,
A.
Paszke
,
J.
VanderPlas
,
S.
Wanderman-Milne
, and
Q.
Zhang
, “JAX: Composable transformations of Python+NumPy programs” (2018); available at http://github.com/google/jax.
39.
S.
Jiang
(2023). “Dataset for non-local Fokker-Planck equations,” Github, V. 1.0.0, Dataset. https://github.com/sjiang23/senbaojiang.github.io.
You do not currently have access to this content.