Propagating precipitation waves are a remarkable form of spatiotemporal behavior that arise through the coupling of reaction, diffusion, and precipitation. We study a system with a sodium hydroxide outer electrolyte and an aluminum hydroxide inner electrolyte. In a redissolution Liesegang system, a single propagating precipitation band moves down through the gel, with precipitate formed at the band front and precipitate dissolved at the band back. Complex spatiotemporal waves occur within the propagating precipitation band, including counter-rotating spiral waves, target patterns, and annihilation of waves on collision. We have also carried out experiments in thin slices of gel, which have revealed propagating waves of a diagonal precipitation feature within the primary precipitation band. These waves display a wave merging phenomenon in which two horizontally propagating waves merge into a single wave. Computational modeling permits the development of a detailed understanding of the complex dynamical behavior.

1.
R.
Liesegang
, “
Ueber einige eigenschaften von gallerten
,”
Naturwiss. Wochenschr.
11
,
353
(
1896
).
2.
A.
Volford
,
F.
Izsák
,
M.
Ripszám
, and
I.
Lagzi
, “
Pattern formation and self-organization in a simple precipitation system
,”
Langmuir
23
,
961
(
2007
).
3.
M. R.
Tinsley
,
D.
Collison
, and
K.
Showalter
, “
Propagating precipitation waves: Experiments and modeling
,”
J. Phys. Chem. A
117
,
12719
(
2013
).
4.
M. R.
Tinsley
,
D.
Collison
, and
K.
Showalter
, “
Three-dimensional modeling of propagating precipitation waves
,”
Chaos
25
,
064306
(
2015
).
5.
V.
Nasreddine
and
R.
Sultan
, “
Propagating fronts and chaotic dynamics in Co(OH) 2 Liesegang systems
,”
J. Phys. Chem. A
103
,
2934
(
1999
).
6.
A. F.
Taylor
, “
Mechanism and phenomenology of an oscillating chemical reaction
,”
Prog. React. Kinet. Mech.
27
,
247
(
2002
).
7.
R.
Field
,
E.
Koros
, and
R.
Noyes
, “
Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system
,”
J. Am. Chem. Soc.
94
,
8649
(
1972
).
8.
P.
Hantz
,
J.
Partridge
, and
G.
Láng
, “
Ion-selective membranes involved in pattern-forming processes
,”
J. Phys. Chem. B
108
,
18135
(
2004
).
9.
E.
Nakouzi
and
O.
Steinbock
, “
Self-organization in precipitation reactions far from the equilibrium
,”
Sci. Adv.
2
,
e1601144
(
2016
).
10.
N.
Manz
,
S. C.
Müller
, and
O.
Steinbock
, “
Anomalous dispersion of chemical waves in a homogeneously catalyzed reaction system
,”
J. Phys. Chem. A
104
,
5895
(
2000
).
11.
I.
Lagzi
, “
Controlling and engineering precipitation patterns
,”
Langmuir
28
,
3350
(
2012
).
12.
M.
Al-Ghoul
,
M.
Ammar
, and
R. O.
Al-Kaysi
, “
Band propagation, scaling laws and phase transition in a precipitate system. I: Experimental study
,”
J. Phys. Chem. A
116
,
4427
(
2012
).
13.
A. A.
Polezhaev
and
S. C.
Müller
, “
Complexity of precipitation patterns: Comparison of simulation with experiment
,”
Chaos
4
,
631
(
1994
).
14.
S. C.
Müller
,
S.
Kai
, and
J.
Ross
, “
Curiosities in periodic precipitation patterns
,”
Science
216
,
635
(
2013
).
15.
S. C.
Müller
and
J.
Ross
, “
Spatial structure formation in precipitation reactions
,”
J. Phys. Chem. A
107
,
7997
(
2003
).
16.
H.
Nabika
,
M.
Itatani
, and
I.
Lagzi
, “
Pattern formation in precipitation reactions: The Liesegang phenomenon
,”
Langmuir
36
,
481
(
2020
).
17.
M.
Zrinyi
,
L.
Galfi
, and
E.
Smidroczki
, “
Direct observation of a crossover from heterogeneous traveling wave to Liesegang pattern formation
,”
J. Phys. Chem.
95
,
1618
(
1991
).
18.
R.
Sultan
and
S.
Panjarian
, “
Propagating fronts in 2D Cr(OH) 3 precipitate systems in gelled media
,”
Physica D
157
,
241
(
2001
).
19.
M. M.
Ayass
,
I.
Lagzi
, and
M.
Al-Ghoul
, “
Three-dimensional superdiffusive chemical waves in a precipitation system
,”
Phys. Chem. Chem. Phys.
16
,
24656
(
2014
).
20.
M. M.
Ayass
,
I.
Lagzi
, and
M.
Al-Ghoul
, “
Targets, ripples and spirals in a precipitation system with anomalous dispersion
,”
Phys. Chem. Chem. Phys.
17
,
19806
(
2015
).
21.
I. R.
Epstein
and
K.
Showalter
, “
Nonlinear chemical dynamics: Oscillations, patterns, and chaos
,
J. Phys. Chem.
100
,
13132
(
1996
).
22.
N.
Manz
,
C.
Hamik
, and
O.
Steinbock
, “
Tracking waves and vortex nucleation in excitable systems with anomalous dispersion
,”
Phys. Rev. Lett.
92
,
248301
(
2004
).
23.
N.
Manz
,
B. T.
Ginn
, and
O.
Steinbock
, “
Propagation failure dynamics of wave trains in excitable systems
,”
Phys. Rev. E
73
,
066218
(
2006
).
24.
G.
Bordyugov
,
N.
Fischer
,
H.
Engel
,
N.
Manz
, and
O.
Steinbock
, “
Anomalous dispersion in the Belousov–Zhabotinsky reaction: Experiments and modeling
,”
Physica D
239
,
766
(
2010
).
25.
J.
Christoph
,
M.
Eiswirth
,
N.
Hartmann
,
R.
Imbihl
,
I.
Kevrekidis
, and
M.
Bär
, “
Anomalous dispersion and pulse interaction in an excitable surface reaction
,”
Phys. Rev. Lett.
82
,
1586
(
1999
).
26.
J.
Ross
,
S. C.
Müller
, and
C.
Vidal
, “
Chemical waves
,”
Science
240
,
460
(
1988
).
27.
S.
Horvát
and
P.
Hantz
, “
Pattern formation induced by ion-selective surfaces: Models and simulations
,”
J. Chem. Phys.
123
,
034707
(
2005
).

Supplementary Material

You do not currently have access to this content.