Open-loop control is known to be an effective strategy for controlling self-excited periodic oscillations, known as thermoacoustic instability, in turbulent combustors. Here, we present experimental observations and a synchronization model for the suppression of thermoacoustic instability achieved by rotating the otherwise static swirler in a lab-scale turbulent combustor. Starting with the state of thermoacoustic instability in the combustor, we find that a progressive increase in the swirler rotation rate leads to a transition from the state of limit cycle oscillations to the low-amplitude aperiodic oscillations through a state of intermittency. To model such a transition while also quantifying the underlying synchronization characteristics, we extend the model of Dutta et al. [Phys. Rev. E 99, 032215 (2019)] by introducing a feedback between the ensemble of phase oscillators and the acoustic. The coupling strength in the model is determined by considering the effect of the acoustic and swirl frequencies. The link between the model and experimental results is quantitatively established by implementing an optimization algorithm for model parameter estimation. We show that the model is capable of replicating the bifurcation characteristics, nonlinear features of time series, probability density function, and amplitude spectrum of acoustic pressure and heat release rate fluctuations at various dynamical states observed during the transition to the state of suppression. Most importantly, we discuss the flame dynamics and demonstrate that the model without any spatial inputs qualitatively captures the characteristics of the spatiotemporal synchronization between the local heat release rate fluctuations and the acoustic pressure that underpins a transition to the state of suppression. As a result, the model emerges as a powerful tool for explaining and controlling instabilities in thermoacoustic and other extended fluid dynamical systems, where spatiotemporal interactions lead to rich dynamical phenomena.

1.
T. C.
Lieuwen
and
V.
Yang
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(
AIAA
,
Reston, VA
,
2005
).
2.
R. I.
Sujith
and
S. A.
Pawar
,
Thermoacoustic Instability: A Complex Systems Perspective
(
Springer Nature
,
London
,
2021
).
3.
M. P.
Juniper
and
R. I.
Sujith
, “
Sensitivity and nonlinearity of thermoacoustic oscillations
,”
Annu. Rev. Fluid Mech.
50
,
661
689
(
2018
).
4.
J. W. S.
Rayleigh
, “
The explanation of certain acoustical phenomena
,”
Nature
18
,
319
(
1878
).
5.
B.-T.
Chu
, “
On the energy transfer to small disturbances in fluid flow (Part I)
,”
Acta Mech.
1
,
215
234
(
1965
).
6.
T.
Lieuwen
and
B. T.
Zinn
, “The role of equivalence ratio oscillations in driving combustion instabilities in low NO X gas turbines,” in Symposium (International) on Combustion (Elsevier, 1998), Vol. 27, pp. 1809–1816.
7.
K. T.
Kim
,
J. G.
Lee
,
B.
Quay
, and
D.
Santavicca
, “
Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations
,”
Combust. Flame
157
,
1731
1744
(
2010
).
8.
T.
Komarek
and
W.
Polifke
, “
Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner
,”
J. Eng. Gas Turbines Power
132
,
061503
(
2010
).
9.
T. J.
Poinsot
,
A. C.
Trouve
,
D. P.
Veynante
,
S. M.
Candel
, and
E. J.
Esposito
, “
Vortex-driven acoustically coupled combustion instabilities
,”
J. Fluid Mech.
177
,
265
292
(
1987
).
10.
P.-H.
Renard
,
D.
Thevenin
,
J.-C.
Rolon
, and
S.
Candel
, “
Dynamics of flame/vortex interactions
,”
Prog. Energy Combust. Sci.
26
,
225
282
(
2000
).
11.
W.
Polifke
,
C. O.
Paschereit
, and
K.
Döbbeling
, “
Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit
,”
Int. J. Acoust. Vibr.
6
,
135
146
(
2001
).
12.
C. S.
Goh
and
A. S.
Morgans
, “
The influence of entropy waves on the thermoacoustic stability of a model combustor
,”
Combust. Sci. Technol.
185
,
249
268
(
2013
).
13.
S. A.
Pawar
,
A.
Seshadri
,
V. R.
Unni
, and
R. I.
Sujith
, “
Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow
,”
J. Fluid Mech.
827
,
664
693
(
2017
).
14.
V.
Nair
,
G.
Thampi
, and
R. I.
Sujith
, “
Intermittency route to thermoacoustic instability in turbulent combustors
,”
J. Fluid Mech.
756
,
470
487
(
2014
).
15.
S.
Mondal
,
V. R.
Unni
, and
R. I.
Sujith
, “
Onset of thermoacoustic instability in turbulent combustors: An emergence of synchronized periodicity through formation of chimera-like states
,”
J. Fluid Mech.
811
,
659
681
(
2017
).
16.
S. A.
Pawar
,
S.
Mondal
,
N. B.
George
, and
R. I.
Sujith
, “
Temporal and spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor
,”
AIAA J.
57
,
836
847
(
2019
).
17.
T.
Hashimoto
,
H.
Shibuya
,
H.
Gotoda
,
Y.
Ohmichi
, and
S.
Matsuyama
, “
Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor
,”
Phys. Rev. E
99
,
032208
(
2019
).
18.
A.
Roy
,
S.
Singh
,
A.
Nair
,
S.
Chaudhuri
, and
R. I.
Sujith
, “
Flame dynamics during intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-stabilized annular combustor
,”
Proc. Combust. Inst.
38
,
6221
6230
(
2021
).
19.
G. A.
Richards
,
D. L.
Straub
, and
E. H.
Robey
, “
Passive control of combustion dynamics in stationary gas turbines
,”
J. Propul. Power
19
,
795
810
(
2003
).
20.
D.
Zhao
and
X. Y.
Li
, “
A review of acoustic dampers applied to combustion chambers in aerospace industry
,”
Prog. Aerosp. Sci.
74
,
114
130
(
2015
).
21.
K. R.
McManus
,
T.
Poinsot
, and
S. M.
Candel
, “
A review of active control of combustion instabilities
,”
Prog. Energy Combust.
19
,
1
29
(
1993
).
22.
D.
Zhao
,
Z.
Lu
,
H.
Zhao
,
X. Y.
Li
,
B.
Wang
, and
P.
Liu
, “
A review of active control approaches in stabilizing combustion systems in aerospace industry
,”
Prog. Aerosp. Sci.
97
,
35
60
(
2018
).
23.
I. D.
Dupere
and
A. P.
Dowling
, “
The use of Helmholtz resonators in a practical combustor
,”
J. Eng. Gas Turbines Power
127
,
268
275
(
2005
).
24.
R. C.
Steele
,
L. H.
Cowell
,
S. M.
Cannon
, and
C. E.
Smith
, “
Passive control of combustion instability in lean premixed combustors
,”
J. Eng. Gas Turbines Power
122
,
412
419
(
2000
).
25.
J.
Samarasinghe
,
W.
Culler
,
B. D.
Quay
,
D. A.
Santavicca
, and
J.
O’connor
, “
The effect of fuel staging on the structure and instability characteristics of swirl-stabilized flames in a lean premixed multinozzle can combustor
,”
J. Eng. Gas Turbines Power
139
,
121504
(
2017
).
26.
S.
Candel
, “
Combustion dynamics and control: Progress and challenges
,”
Proc. Combust. Inst.
29
,
1
28
(
2002
).
27.
B.
Ćosić
,
B. C.
Bobusch
,
J. P.
Moeck
, and
C. O.
Paschereit
, “
Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing
,”
J. Eng. Gas Turbines Power
134
,
061502
(
2012
).
28.
B. D.
Bellows
,
A.
Hreiz
, and
T. C.
Lieuwen
, “
Nonlinear interactions between forced and self-excited acoustic oscillations in premixed combustor
,”
J. Propul. Power
24
,
628
631
(
2008
).
29.
S.
Balusamy
,
L. K. B.
Li
,
Z.
Han
,
M. P.
Juniper
, and
S.
Hochgreb
, “
Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing
,”
Proc. Combust. Inst.
35
,
3229
3236
(
2015
).
30.
J. R.
Seume
,
N.
Vortmeyer
,
W.
Krause
,
J.
Hermann
,
C.-C.
Hantschk
,
P.
Zangl
,
S.
Gleis
,
D.
Vortmeyer
, and
A.
Orthmann
, “
Application of active combustion instability control to a heavy duty gas turbine
,”
J. Eng. Gas Turbines Power
120
,
721
726
(
1998
).
31.
J. H.
Uhm
and
S.
Acharya
, “
Low-bandwidth open-loop control of combustion instability
,”
Combust. Flame
142
,
348
363
(
2005
).
32.
Y.
Guan
,
V.
Gupta
,
K.
Kashinath
, and
L. K. B.
Li
, “
Open-loop control of periodic thermoacoustic oscillations: Experiments and low-order modelling in a synchronization framework
,”
Proc. Combust. Inst.
37
,
5315
5323
(
2019
).
33.
A.
Roy
,
S.
Mondal
,
S. A.
Pawar
, and
R. I.
Sujith
, “
On the mechanism of open-loop control of thermoacoustic instability in a laminar premixed combustor
,”
J. Fluid Mech.
884
,
A2
(
2020
).
34.
W.
Gang
,
L.
Zhengli
,
P.
Weichen
,
G.
Yiheng
, and
J.
CZ
, “
Numerical and experimental demonstration of actively passive mitigating self-sustained thermoacoustic oscillations
,”
Appl. Energy
222
,
257
266
(
2018
).
35.
R.
Gopakumar
,
S.
Mondal
,
R.
Paul
,
S.
Mahesh
, and
S.
Chaudhuri
, “
Mitigating instability by actuating the swirler in a combustor
,”
Combust. Flame
165
,
361
363
(
2016
).
36.
S.
Mahesh
,
R.
Gopakumar
,
B. V.
Rahul
,
A. K.
Dutta
,
S.
Mondal
, and
S.
Chaudhuri
, “
Instability control by actuating the swirler in a lean premixed combustor
,”
J. Propul. Power
34
,
708
719
(
2018
).
37.
A. K.
Dutta
,
G.
Ramachandran
, and
S.
Chaudhuri
, “
Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators
,”
Phys. Rev. E
99
,
032215
(
2019
).
38.
Y.
Kuramoto
, “
Self-entrainment of a population of coupled non-linear oscillators
,” in
International Symposium on Mathematical Problems in Theoretical Physics
(
Springer
,
1975
), pp.
420
422
.
39.
S.
Singh
,
A.
Roy
,
J. M.
Dhadphale
,
S.
Chaudhuri
, and
R. I.
Sujith
, “
Mean-field synchronization model of turbulent thermoacoustic transitions
,” arXiv:2208.11550 (2022), p. 1.
40.
S.
Candel
,
D.
Durox
,
T.
Schuller
,
J. F.
Bourgouin
, and
J. P.
Moeck
, “
Dynamics of swirling flames
,”
Annu. Rev. Fluid Mech.
46
,
147
173
(
2014
).
41.
K.
Balasubramanian
and
R. I.
Sujith
, “
Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity
,”
Phys. Fluids
20
,
044103
(
2008
).
42.
F.
Nicoud
and
K.
Wieczorek
, “
About the zero Mach number assumption in the calculation of thermoacoustic instabilities
,”
Int. J. Spray Combust. Dyn.
1
,
67
111
(
2009
).
43.
B. T.
Zinn
and
M. E.
Lores
, “
Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets
,”
Combust. Sci. Technol.
4
,
269
278
(
1971
).
44.
T. C.
Lieuwen
,
Unsteady Combustor Physics
(
Cambridge University Press
,
New York
,
2021
).
45.
G. M.
Ramírez-Ávila
,
J.
Kurths
, and
J. L.
Deneubourg
, “Fireflies: A paradigm in synchronization,” in Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives (Springer, 2018), pp. 35–64.
46.
K. I.
Matveev
and
F. E. C.
Culick
, “
A model for combustion instability involving vortex shedding
,”
Combust. Sci. Technol.
175
,
1059
1083
(
2003
).
47.
F. E. C.
Culick
and
P.
Kuentzmann
, “Unsteady motions in combustion chambers for propulsion systems,” Technical Report (NATO Research and Technology Organization Neuilly-Sur-Seine, 2006).
48.
W.
Polifke
and
C.
Schram
, System Identification for Aero-and Thermo-Acoustic Applications, Advances in Aero-Acoustics and Thermo-Acoustics (Von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium, 2010).
49.
M.
Lee
,
Y.
Guan
,
V.
Gupta
, and
L. K. B.
Li
, “
Input-output system identification of a thermoacoustic oscillator near a Hopf bifurcation using only fixed-point data
,”
Phys. Rev. E
101
,
013102
(
2020
).
50.
M.
Lee
,
K. T.
Kim
,
V.
Gupta
, and
L. K. B.
Li
, “
System identification and early warning detection of thermoacoustic oscillations in a turbulent combustor using its noise-induced dynamics
,”
Proc. Combust. Inst.
38
,
6025
6033
(
2021
).
51.
H.
Yu
,
T.
Jaravel
,
M.
Ihme
,
M. P.
Juniper
, and
L.
Magri
, “
Data assimilation and optimal calibration in nonlinear models of flame dynamics
,”
J. Eng. Gas Turbines Power
141
,
121010
(
2019
).
52.
H.
Yu
,
M. P.
Juniper
, and
L.
Magri
, “
A data-driven kinematic model of a ducted premixed flame
,”
Proc. Combust. Inst.
38
,
6231
6239
(
2021
).
53.
L.
Zheng
and
X.
Zhang
,
Modeling and Analysis of Modern Fluid Problems
(
Academic Press
,
Cambridge
,
2017
).
54.
S.
Boyd
,
S. P.
Boyd
, and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
New York
,
2004
).
55.
A. G.
Baydin
,
B. A.
Pearlmutter
,
A. A.
Radul
, and
J. M.
Siskind
, “
Automatic differentiation in machine learning: A survey
,”
J. Mach. Learn. Res.
18
,
1
43
(
2018
).
56.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Cambridge University Press
,
Cambridge
,
2002
).
57.
R. I.
Sujith
and
V. R.
Unni
, “
Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors
,”
Phys. Fluids
32
,
061401
(
2020
).
58.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
59.
S. J.
Shanbhogue
,
M.
Seelhorst
, and
T.
Lieuwen
, “
Vortex phase-jitter in acoustically excited bluff body flames
,”
Int. J. Spray Combust. Dyn.
1
,
365
387
(
2009
).
60.
D.-H.
Shin
and
T.
Lieuwen
, “
Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames
,”
J. Fluid Mech.
721
,
484
513
(
2013
).
61.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
62.
H.
Gotoda
,
M.
Amano
,
T.
Miyano
,
T.
Ikawa
,
K.
Maki
, and
S.
Tachibana
, “
Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor
,”
Chaos
22
,
043128
(
2012
).
63.
H.
Gotoda
,
K.
Michigami
,
K.
Ikeda
, and
T.
Miyano
, “
Chaotic oscillation in diffusion flame induced by radiative heat loss
,”
Combust. Theory Model.
14
,
479
493
(
2010
).
64.
H.
Kobayashi
,
H.
Gotoda
,
S.
Tachibana
, and
S.
Yoshida
, “
Detection of frequency-mode-shift during thermoacoustic combustion oscillations in a staged aircraft engine model combustor
,”
J. Appl. Phys.
122
,
224904
(
2017
).
65.
R.
Hernandez-Rivera
,
G.
Troiani
,
T.
Pagliaroli
, and
A.
Hernandez-Guerrero
, “
Detection of the thermoacoustic combustion instabilities of a slot burner based on a diagonal-wise recurrence quantification
,”
Phys. Fluids
31
,
124105
(
2019
).
66.
A.
Balanov
,
N.
Janson
,
D.
Postnov
, and
O.
Sosnovtseva
,
Synchronization: From Simple to Complex
(
Springer Science & Business Media
,
Berlin
,
2008
).
67.
N.
Krylov
and
N.
Bogolyubov
,
Introduction to Nonlinear Mechanics
(
Princeton University Press
,
Princeton
,
1947
).
68.
O. V.
Popovych
,
Y. L.
Maistrenko
, and
P. A.
Tass
, “
Phase chaos in coupled oscillators
,”
Phys. Rev. E
71
,
065201
(
2005
).
69.
C.
Bick
,
M. J.
Panaggio
, and
E. A.
Martens
, “
Chaos in Kuramoto oscillator networks
,”
Chaos
28
,
071102
(
2018
).
You do not currently have access to this content.