Open-loop control is known to be an effective strategy for controlling self-excited periodic oscillations, known as thermoacoustic instability, in turbulent combustors. Here, we present experimental observations and a synchronization model for the suppression of thermoacoustic instability achieved by rotating the otherwise static swirler in a lab-scale turbulent combustor. Starting with the state of thermoacoustic instability in the combustor, we find that a progressive increase in the swirler rotation rate leads to a transition from the state of limit cycle oscillations to the low-amplitude aperiodic oscillations through a state of intermittency. To model such a transition while also quantifying the underlying synchronization characteristics, we extend the model of Dutta et al. [Phys. Rev. E 99, 032215 (2019)] by introducing a feedback between the ensemble of phase oscillators and the acoustic. The coupling strength in the model is determined by considering the effect of the acoustic and swirl frequencies. The link between the model and experimental results is quantitatively established by implementing an optimization algorithm for model parameter estimation. We show that the model is capable of replicating the bifurcation characteristics, nonlinear features of time series, probability density function, and amplitude spectrum of acoustic pressure and heat release rate fluctuations at various dynamical states observed during the transition to the state of suppression. Most importantly, we discuss the flame dynamics and demonstrate that the model without any spatial inputs qualitatively captures the characteristics of the spatiotemporal synchronization between the local heat release rate fluctuations and the acoustic pressure that underpins a transition to the state of suppression. As a result, the model emerges as a powerful tool for explaining and controlling instabilities in thermoacoustic and other extended fluid dynamical systems, where spatiotemporal interactions lead to rich dynamical phenomena.
Skip Nav Destination
Article navigation
April 2023
Research Article|
April 03 2023
Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system
Samarjeet Singh
;
Samarjeet Singh
a)
(Conceptualization, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing)
1
Department of Aerospace Engineering, Indian Institute of Technology Madras
, Chennai, Tamil Nadu 600036, India
2
Institute for Aerospace Studies, University of Toronto
, Toronto, Ontario M3H 5T6, Canada
a)Author to whom correspondence should be addressed: samarjeet.singh448@gmail.com
Search for other works by this author on:
Ankit Kumar Dutta
;
Ankit Kumar Dutta
(Investigation, Methodology, Writing – original draft, Writing – review & editing)
3
Department of Aerospace Engineering, Indian Institute of Science
, Bangalore 560012, India
Search for other works by this author on:
Jayesh M. Dhadphale
;
Jayesh M. Dhadphale
(Writing – original draft, Writing – review & editing)
1
Department of Aerospace Engineering, Indian Institute of Technology Madras
, Chennai, Tamil Nadu 600036, India
Search for other works by this author on:
Amitesh Roy
;
Amitesh Roy
b)
(Writing – original draft, Writing – review & editing)
1
Department of Aerospace Engineering, Indian Institute of Technology Madras
, Chennai, Tamil Nadu 600036, India
Search for other works by this author on:
R. I. Sujith
;
R. I. Sujith
(Supervision, Writing – original draft, Writing – review & editing)
1
Department of Aerospace Engineering, Indian Institute of Technology Madras
, Chennai, Tamil Nadu 600036, India
Search for other works by this author on:
Swetaprovo Chaudhuri
Swetaprovo Chaudhuri
(Conceptualization, Supervision, Writing – original draft, Writing – review & editing)
1
Department of Aerospace Engineering, Indian Institute of Technology Madras
, Chennai, Tamil Nadu 600036, India
2
Institute for Aerospace Studies, University of Toronto
, Toronto, Ontario M3H 5T6, Canada
Search for other works by this author on:
a)Author to whom correspondence should be addressed: samarjeet.singh448@gmail.com
b)
Present address: Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6, Canada.
Chaos 33, 043104 (2023)
Article history
Received:
November 25 2022
Accepted:
March 10 2023
Citation
Samarjeet Singh, Ankit Kumar Dutta, Jayesh M. Dhadphale, Amitesh Roy, R. I. Sujith, Swetaprovo Chaudhuri; Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system. Chaos 1 April 2023; 33 (4): 043104. https://doi.org/10.1063/5.0136385
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00