The ongoing monkeypox outbreak that began in the UK has currently spread to every continent. Here, we use ordinary differential equations to build a nine-compartmental mathematical model to examine the dynamics of monkeypox transmission. The basic reproduction number for both humans ( R 0 h) and animals ( R 0 a) is obtained using the next-generation matrix technique. Depending on the values of R 0 h and R 0 a, we discovered that there are three equilibria. The current study also looks at the stability of all equilibria. We discovered that the model experiences transcritical bifurcation at R 0 a = 1 for any value of R 0 h and at R 0 h = 1 for R 0 a < 1. This is the first study that, to the best of our knowledge, has constructed and solved an optimal monkeypox control strategy while taking vaccination and treatment controls into consideration. The infected averted ratio and incremental cost-effectiveness ratio were calculated to evaluate the cost-effectiveness of all viable control methods. Using the sensitivity index technique, the parameters used in the formulation of R 0 h and R 0 a are scaled.

1.
Wikipedia, see https://en.wikipedia.org/wiki/2022_monkeypox_outbreak#cite_note-WHO13-5 for “2022 monkeypox outbreak.”
3.
See https://ourworldindata.org/explorers/monkeypox? for “ Our World in Data.”
5.
N.
Sklenovská
and
M. V.
Ranst
, “
Emergence of monkeypox as the most important orthopoxvirus infection in humans
,”
Front. Public Health
6
,
241
(
2018
).
6.
D. L.
Heymann
,
M.
Szczeniowski
, and
K.
Esteves
, “
Re-emergence of monkeypox in Africa: A review of the past six years
,”
Br. Med. Bull.
54
(
3
),
693
702
(
1998
).
8.
P. E.
Fine
,
Z.
Jezek
,
B.
Grab
, and
H.
Dixon
, “
The transmission potential of monkeypox virus in human populations
,”
Int. J. Epidemiol.
17
(
3
),
643
650
(
1988
).
9.
O. A.
Arqub
and
A.
El-Ajou
, “
Solution of the fractional epidemic model by homotopy analysis method
,”
J. King Saud Univ. Sci.
25
(
1
),
73
81
(
2013
).
10.
N.
Sweilam
,
S.
Al-Mekhlafi
,
S.
Shatta
, and
D.
Baleanu
, “
Numerical treatments for the optimal control of two types variable-order COVID-19 model
,”
Res. Phys.
42
,
105964
(
2022
).
11.
D.
Baleanu
,
F. A.
Ghassabzade
,
J. J.
Nieto
, and
A.
Jajarmi
, “
On a new and generalized fractional model for a real cholera outbreak
,”
Alexandria Eng. J.
61
(
11
),
9175
9186
(
2022
).
12.
T. K.
Kar
,
S. K.
Nandi
,
S.
Jana
, and
M.
Mandal
, “
Stability and bifurcation analysis of an epidemic model with the effect of media
,”
Chaos, Solitons Fractals
120
,
188
199
(
2019
).
13.
A.
Khatua
and
T. K.
Kar
, “
Impacts of media awareness on a stage structured epidemic model
,”
Int. J. Appl. Comput. Math.
6
,
152
(
2020
).
14.
A.
Khatua
,
D. K.
Das
, and
T. K.
Kar
, “
Optimal control strategy for adherence to different treatment regimen in various stages of tuberculosis infection
,”
Eur. Phys. J. Plus
136
,
801
(
2021
).
15.
M.
Kizito
and
J.
Tumwiine
, “
A mathematical model of treatment and vaccination interventions of pneumococcal pneumonia infection dynamics
,”
J. Appl. Math.
2018
,
1
16
(
2018
).
16.
S.
Usman
and
I. I.
Adamu
, “
Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions
,”
J. Appl. Math. Phys.
5
(
12
),
2335
2353
(
2017
).
17.
O. J.
Peter
,
S.
Kumar
,
N.
Kumari
,
F. A.
Oguntolu
,
K.
Oshinubi
, and
R.
Musa
, “
Transmission dynamics of monkeypox virus: A mathematical modelling approach
,”
Model Earth Syst. Environ.
8
(
3
),
3423
3434
(
2022
).
18.
O. J.
Peter
,
F. A.
Oguntolu
,
M. M.
Ojo
,
A. O.
Oyeniyi
,
R.
Jan
, and
I.
Khan
, “
Fractional order mathematical model of monkeypox transmission dynamics
,”
Phys. Scr.
97
,
084005
(
2022
).
19.
C. P.
Bhunu
and
S.
Mushayabasa
, “
Modelling the transmission dynamics of pox-like infections
,”
IAENG Int. J. Appl. Math.
41
(
2
),
141
149
(
2011
).
20.
H. A. A.
El-Saka
,
A.
Al-Dmour
, and
I.
Obaya
, “
Asymptomatic and pre-symptoms transmission of COVID-19 in heterogeneous epidemic network
,”
Inf. Sci. Lett.
11
(
1
),
149
160
(
2022
).
21.
L. S.
Pontryagin
,
V. G.
Boltyanskii
,
R. V.
Gamkrelidze
, and
E. F.
Mishchenko
,
The Mathematical Theory of Optimal Processes
(
Wiley
,
New York
,
1962
).
22.
O.
Sharomi
and
T.
Malik
, “
Optimal control in epidemiology
,”
Ann. Oper. Res.
251
(
1–2
),
55
71
(
2017
).
23.
S. F.
Abimbade
,
S.
Olaniyi
,
O. A.
Ajala
, and
M. O.
Ibrahim
, “
Optimal control analysis of a tuberculosis model with exogenous re-infection and incomplete treatment
,”
Optim. Control Appl. Methods
41
,
2349
2368
(
2020
).
24.
S.
Olaniyi
,
J. O.
Akanni
, and
O. A.
Adepoju
, “
Optimal control and cost-effectiveness analysis of an illicit drug use population dynamics
,”
J. Appl. Nonlinear Dyn.
12
(
1
),
133
146
(
2023
).
25.
D. L.
Lukes
, “Differential equations: Classical to controlled,” in Mathematics in Science and Engineering (Academic Press, New York, 1982), Vol. 162.
26.
G.
Zaman
,
Y. H.
Kang
, and
I. H.
Jung
, “
Stability analysis and optimal vaccination of an SIR epidemic model
,”
BioSystems
93
,
240
249
(
2008
).
27.
A.
Abidemi
,
S.
Olaniyi
, and
O. A.
Adepoju
, “
An explicit note on the existence theorem of optimal control problem
,”
J. Phys.: Conf. Ser.
2199
,
012021
(
2022
).
28.
W. H.
Fleming
and
R. W.
Rishel
,
Deterministic and Stochastic Optimal Control
(
Springer Verlag
,
New York
,
1975
).
29.
S.
Majee
,
S.
Jana
,
S.
Barman
, and
T. K.
Kar
, “
Transmission dynamics of monkeypox virus with treatment and vaccination controls: A fractional order mathematical approach
,”
Phys. Scr.
98
,
024002
(
2023
).
30.
P. C.
Emeka
,
M. O.
Ounorah
,
F. Y.
Eguda
, and
B. G.
Babangida
, “
Mathematical model for monkeypox virus transmission dynamics
,”
Epidemiology
8
,
348
(
2018
).
31.
P.
Rodrigues
,
C. J.
Silva
, and
D. F. M.
Torres
, “
Cost effectiveness analysis of optimal control measures for tuberculosis
,”
Bull. Math. Biol.
76
(
10
),
2627
2645
(
2014
).
32.
F. B.
Agusto
, “
Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model
,”
BioSystems
113
(
3
),
155
164
(
2013
).
33.
K. O.
Okosun
,
R.
Ouifki
, and
N.
Marcus
, “
Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity
,”
BioSystems
106
(
2–3
),
136
145
(
2011
).
34.
M.
Mandal
,
S.
Jana
,
S. K.
Nandi
, and
T. K.
Kar
, “
Complex dynamics of an epidemic model with optimal vaccination and treatment in the presence of population dispersal
,”
Discontin. Nonlinearity Complex.
10
(
3
),
471
497
(
2021
).
35.
H. W.
Berhe
,
O. D.
Makinde
, and
D. M.
Theuri
, “
Optimal control and cost-effectiveness analysis for dysentery epidemic model
,”
Appl. Math. Inf. Sci.
12
(
6
),
1183
1195
(
2018
).
36.
S.
Olaniyi
,
O. D.
Falowo
,
K. O.
Okosun
,
M.
Mukamuri
,
O. S.
Obabiyi
, and
O. A.
Adepoju
, “
Effect of saturated treatment on malaria spread with optimal intervention
,”
Alexandria Eng. J.
65
,
443
459
(
2023
).
37.
S.
Olaniyi
,
M.
Mukamuri
,
K. O.
Okosun
, and
O. A.
Adepoju
, “
Mathematical analysis of a social hierarchy-structured model for malaria transmission dynamics
,”
Res. Phys.
34
,
104991
(
2022
).
38.
S.
Olaniyi
, Dominant and dominated intervention strategies in cost-effectiveness analysis: Case study of a zika virus model. .
39.
D. K.
Das
and
T. K.
Kar
, “
Global dynamics of a tuberculosis model with sensitivity of the smear microscopy
,”
Chaos, Solitons Fractals
146
,
110879
(
2021
).
40.
S.
Majee
,
S.
Jana
,
D. K.
Das
, and
T. K.
Kar
, “
Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability
,”
Chaos, Solitons Fractals
161
,
112291
(
2022
).
41.
H. A. A.
El-Saka
,
I.
Obaya
, and
H. N.
Agiza
, “
A fractional complex network model for novel corona virus in China
,”
Adv. Differ. Equ.
2021
,
5
(
2021
).
42.
N.
Chitnis
,
J. M.
Hyman
, and
J. M.
Cushing
, “
Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model
,”
Bull. Math. Biol.
70
,
1272
(
2008
).
You do not currently have access to this content.