Outbreaks are complex multi-scale processes that are impacted not only by cellular dynamics and the ability of pathogens to effectively reproduce and spread, but also by population-level dynamics and the effectiveness of mitigation measures. A timely exchange of information related to the spread of novel pathogens, stay-at-home orders, and other measures can be effective at containing an infectious disease, particularly during the early stages when testing infrastructure, vaccines, and other medical interventions may not be available at scale. Using a multiplex epidemic model that consists of an information layer (modeling information exchange between individuals) and a spatially embedded epidemic layer (representing a human contact network), we study how random and targeted disruptions in the information layer (e.g., errors and intentional attacks on communication infrastructure) impact the total proportion of infections, peak prevalence (i.e., the maximum proportion of infections), and the time to reach peak prevalence. We calibrate our model to the early outbreak stages of the SARS-CoV-2 pandemic in 2020. Mitigation campaigns can still be effective under random disruptions, such as failure of information channels between a few individuals. However, targeted disruptions or sabotage of hub nodes that exchange information with a large number of individuals can abruptly change outbreak characteristics, such as the time to reach the peak of infection. Our results emphasize the importance of the availability of a robust communication infrastructure during an outbreak that can withstand both random and targeted disruptions.

1.
T.
Schneider
,
O. R.
Dunbar
,
J.
Wu
,
L.
Böttcher
,
D.
Burov
,
A.
Garbuno-Inigo
,
G. L.
Wagner
,
S.
Pei
,
C.
Daraio
,
R.
Ferrari
, and
J.
Shaman
, “
Epidemic management and control through risk-dependent individual contact interventions
,”
PLoS Comput. Biol.
18
,
e1010171
(
2022
).
2.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Dynamical interplay between awareness and epidemic spreading in multiplex networks
,”
Phys. Rev. Lett.
111
,
128701
(
2013
).
3.
J. P.
Gleeson
, “
Binary-state dynamics on complex networks: Pair approximation and beyond
,”
Phys. Rev. X
3
,
021004
(
2013
).
4.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
(
2015
).
5.
M. E. J.
Newman
, “
Properties of highly clustered networks
,”
Phys. Rev. E
68
,
026121
(
2003
).
6.
W.
Huang
and
C.
Li
, “
Epidemic spreading in scale-free networks with community structure
,”
J. Stat. Mech.: Theory Exp.
2007
,
P01014
.
7.
I.
Tunc
and
L. B.
Shaw
, “
Effects of community structure on epidemic spread in an adaptive network
,”
Phys. Rev. E
90
,
022801
(
2014
).
8.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Epidemic spreading in scale-free networks
,”
Phys. Rev. Lett.
86
,
3200
(
2001
).
9.
M. J.
Keeling
and
P.
Rohani
,
Modeling Infectious Diseases in Humans and Animals
(
Princeton University Press
,
Princeton, NJ
,
2011
).
10.
L.
Böttcher
,
O.
Woolley-Meza
,
E.
Goles
,
D.
Helbing
, and
H. J.
Herrmann
, “
Connectivity disruption sparks explosive epidemic spreading
,”
Phys. Rev. E
93
,
042315
(
2016
).
11.
L.
Böttcher
,
H. J.
Herrmann
, and
M.
Henkel
, “
Dynamical universality of the contact process
,”
J. Phys. A: Math. Theor.
51
,
125003
(
2018
).
12.
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
13.
R. M.
D’Souza
,
J.
Gómez-Gardenes
,
J.
Nagler
, and
A.
Arenas
, “
Explosive phenomena in complex networks
,”
Adv. Phys.
68
,
123
223
(
2019
).
14.
R. M.
D’Souza
and
J.
Nagler
, “
Anomalous critical and supercritical phenomena in explosive percolation
,”
Nat. Phys.
11
,
531
538
(
2015
).
15.
L.
Böttcher
and
N.
Antulov-Fantulin
, “
Unifying continuous, discrete, and hybrid susceptible-infected-recovered processes on networks
,”
Phys. Rev. Res.
2
,
033121
(
2020
).
16.
J.
Fan
,
J.
Meng
,
Y.
Liu
,
A. A.
Saberi
,
J.
Kurths
, and
J.
Nagler
, “
Universal gap scaling in percolation
,”
Nat. Phys.
16
,
455
461
(
2020
).
17.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
18.
M.
De Domenico
,
A.
Solé-Ribalta
,
E.
Cozzo
,
M.
Kivelä
,
Y.
Moreno
,
M. A.
Porter
,
S.
Gómez
, and
A.
Arenas
, “
Mathematical formulation of multilayer networks
,”
Phys. Rev. X
3
,
041022
(
2013
).
19.
M.
Kivelä
,
A.
Arenas
,
M.
Barthelemy
,
J. P.
Gleeson
,
Y.
Moreno
, and
M. A.
Porter
, “
Multilayer networks
,”
J. Complex Netw.
2
,
203
271
(
2014
).
20.
C.
Berge
,
Graphs and Hypergraphs
(
North-Holland Publishing Co.
,
Amsterdam, the Netherlands
,
1973
).
21.
O. T.
Courtney
and
G.
Bianconi
, “
Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes
,”
Phys. Rev. E
93
,
062311
(
2016
).
22.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
23.
M. S.
Anwar
and
D.
Ghosh
, “
Intralayer and interlayer synchronization in multiplex network with higher-order interactions
,”
Chaos
32
,
033125
(
2022
).
24.
Z.
Wang
,
M. A.
Andrews
,
Z.-X.
Wu
,
L.
Wang
, and
C. T.
Bauch
, “
Coupled disease–behavior dynamics on complex networks: A review
,”
Phys. Life Rev.
15
,
1
29
(
2015
).
25.
E. P.
Fenichel
,
C.
Castillo-Chavez
,
M. G.
Ceddia
,
G.
Chowell
,
P. A. G.
Parra
,
G. J.
Hickling
,
G.
Holloway
,
R.
Horan
,
B.
Morin
,
C.
Perrings
,
M.
Springborn
,
L.
Velazquez
, and
C.
Villalobos
, “
Adaptive human behavior in epidemiological models
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
6306
6311
(
2011
).
26.
F.
Chen
, “
A mathematical analysis of public avoidance behavior during epidemics using game theory
,”
J. Theor. Biol.
302
,
18
28
(
2012
).
27.
T. C.
Reluga
, “
Equilibria of an epidemic game with piecewise linear social distancing cost
,”
Bull. Math. Biol.
75
,
1961
1984
(
2013
).
28.
L.
Böttcher
,
J.
Nagler
, and
H. J.
Herrmann
, “
Critical behaviors in contagion dynamics
,”
Phys. Rev. Lett.
118
,
088301
(
2017
).
29.
F. D.
Sahneh
and
C. M.
Scoglio
, “
Epidemic spread in human networks
,” in
50th IEEE Conference on Decision and Control and European Control Conference, 11th European Control Conference, CDC/ECC 2011, Orlando, FL, 12–15 December 2011
(
IEEE
,
2011
), pp.
3008
3013
.
30.
F. D.
Sahneh
and
C. M.
Scoglio
, “
Optimal information dissemination in epidemic networks
,” in
Proceedings of the 51th IEEE Conference on Decision and Control, CDC 2012, Maui, HI, 10–13 December 2012
(
IEEE
,
2012
), pp.
1657
1662
.
31.
H.
Shakeri
,
F. D.
Sahneh
,
C.
Scoglio
,
P.
Poggi-Corradini
, and
V. M.
Preciado
, “
Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks
,”
Math. Biosci. Eng.
12
,
609
(
2015
).
32.
C.
Granell
,
S.
Gómez
, and
A.
Arenas
, “
Competing spreading processes on multiplex networks: Awareness and epidemics
,”
Phys. Rev. E
90
,
012808
(
2014
).
33.
Q.
Guo
,
X.
Jiang
,
Y.
Lei
,
M.
Li
,
Y.
Ma
, and
Z.
Zheng
, “
Two-stage effects of awareness cascade on epidemic spreading in multiplex networks
,”
Phys. Rev. E
91
,
012822
(
2015
).
34.
V.
Sagar
,
Y.
Zhao
, and
A.
Sen
, “
Effect of time varying transmission rates on the coupled dynamics of epidemic and awareness over a multiplex network
,”
Chaos
28
,
113125
(
2018
).
35.
M.
Scatá
,
B.
Attanasio
,
G. V.
Aiosa
, and
A.
La Corte
, “
The dynamical interplay of collective attention, awareness and epidemics spreading in the multiplex social networks during COVID-19
,”
IEEE Access
8
,
189203
189223
(
2020
).
36.
Z.
Wang
,
Q.
Guo
,
S.
Sun
, and
C.
Xia
, “
The impact of awareness diffusion on SIR-like epidemics in multiplex networks
,”
Appl. Math. Comput.
349
,
134
147
(
2019
).
37.
K. A.
Kabir
,
K.
Kuga
, and
J.
Tanimoto
, “
Analysis of SIR epidemic model with information spreading of awareness
,”
Chaos, Solitons Fractals
119
,
118
125
(
2019
).
38.
K. A.
Kabir
and
J.
Tanimoto
, “
Vaccination strategies in a two-layer SIR/V–UA epidemic model with costly information and buzz effect
,”
Commun. Nonlinear Sci. Numer. Simul.
76
,
92
108
(
2019
).
39.
Z.
Wang
,
C.
Xia
,
Z.
Chen
, and
G.
Chen
, “
Epidemic propagation with positive and negative preventive information in multiplex networks
,”
IEEE Trans. Cybern.
51
,
1454
1462
(
2020
).
40.
F.
Velásquez-Rojas
,
P. C.
Ventura
,
C.
Connaughton
,
Y.
Moreno
,
F. A.
Rodrigues
, and
F.
Vazquez
, “
Disease and information spreading at different speeds in multiplex networks
,”
Phys. Rev. E
102
,
022312
(
2020
).
41.
H.
Guo
,
Q.
Yin
,
C.
Xia
, and
M.
Dehmer
, “
Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks
,”
Nonlinear Dyn.
105
,
3819
3833
(
2021
).
42.
J.
Fan
,
Q.
Yin
,
C.
Xia
, and
M.
Perc
, “
Epidemics on multilayer simplicial complexes
,”
Proc. R. Soc. A
478
,
20220059
(
2022
).
43.
W.
Wang
,
Q.-H.
Liu
,
J.
Liang
,
Y.
Hu
, and
T.
Zhou
, “
Coevolution spreading in complex networks
,”
Phys. Rep.
820
,
1
51
(
2019
).
44.
M. J.
Keeling
and
B. T.
Grenfell
, “
Understanding the persistence of measles: Reconciling theory, simulation and observation
,”
Proc. R. Soc. London, Ser. B
269
,
335
343
(
2002
).
45.
B. D.
Elderd
,
G.
Dwyer
, and
V.
Dukic
, “
Population-level differences in disease transmission: A Bayesian analysis of multiple smallpox epidemics
,”
Epidemics
5
,
146
156
(
2013
).
46.
L.
Böttcher
and
J.
Nagler
, “
Decisive conditions for strategic vaccination against SARS-CoV-2
,”
Chaos
31
,
101105
(
2021
).
47.
A.
Teslya
,
T. M.
Pham
,
N. G.
Godijk
,
M. E.
Kretzschmar
,
M. C.
Bootsma
, and
G.
Rozhnova
, “
Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study
,”
PLoS Med.
17
,
e1003166
(
2020
).
48.
A.
Arenas
,
W.
Cota
,
J.
Gómez-Gardeñes
,
S.
Gómez
,
C.
Granell
,
J. T.
Matamalas
,
D.
Soriano-Paños
, and
B.
Steinegger
, “
Modeling the spatiotemporal epidemic spreading of COVID-19 and the impact of mobility and social distancing interventions
,”
Phys. Rev. X
10
,
041055
(
2020
).
49.
C. C.
Kerr
,
R. M.
Stuart
,
D.
Mistry
,
R. G.
Abeysuriya
,
K.
Rosenfeld
,
G. R.
Hart
,
R. C.
Núñez
,
J. A.
Cohen
,
P.
Selvaraj
,
B.
Hagedorn
et al., “
Covasim: An agent-based model of COVID-19 dynamics and interventions
,”
PLoS Comput. Biol.
17
,
e1009149
(
2021
).
50.
O.
Diekmann
,
H. G.
Othmer
,
R.
Planqué
, and
M. C.
Bootsma
, “
The discrete-time Kermack–McKendrick model: A versatile and computationally attractive framework for modeling epidemics
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2106332118
(
2021
).
51.
C.-C.
Lai
,
T.-P.
Shih
,
W.-C.
Ko
,
H.-J.
Tang
, and
P.-R.
Hsueh
, “
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges
,”
Int. J. Antimicrob. Agents
55
,
105924
(
2020
).
52.
S. W.
Park
,
B. M.
Bolker
,
D.
Champredon
,
D. J.
Earn
,
M.
Li
,
J. S.
Weitz
,
B. T.
Grenfell
, and
J.
Dushoff
, “
Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: Framework and applications to the novel coronavirus (SARS-CoV-2) outbreak
,”
J. R. Soc. Interface
17
,
20200144
(
2020
).
53.
H.
Xin
,
Y.
Li
,
P.
Wu
,
Z.
Li
,
E. H.
Lau
,
Y.
Qin
,
L.
Wang
,
B. J.
Cowling
,
T. K.
Tsang
, and
Z.
Li
, “
Estimating the latent period of coronavirus disease 2019 (COVID-19)
,”
Clin. Infect. Dis.
74
,
1678
1681
(
2022
).
54.
L.
Böttcher
,
M.
Xia
, and
T.
Chou
, “
Why case fatality ratios can be misleading: Individual-and population-based mortality estimates and factors influencing them
,”
Phys. Biol.
17
,
065003
(
2020
).
55.
“Duration of isolation and precautions for adults with COVID-19” (Centers for Disease Control and Prevention, 2020), available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-isolation.html, accessed 4 January 2021.
56.
H.
Salje
,
C.
Tran Kiem
,
N.
Lefrancq
,
N.
Courtejoie
,
P.
Bosetti
,
J.
Paireau
,
A.
Andronico
,
N.
Hozé
,
J.
Richet
,
C.-L.
Dubost
et al., “
Estimating the burden of SARS-CoV-2 in France
,”
Science
369
,
208
211
(
2020
).
57.
L.
Böttcher
,
M. R.
D’Orsogna
, and
T.
Chou
, “
Using excess deaths and testing statistics to determine COVID-19 mortalities
,”
Eur. J. Epidemiol.
36
,
545
558
(
2021
).
58.
G.
Liu
,
Z.
Liu
, and
Z.
Jin
, “
Dynamics analysis of epidemic and information spreading in overlay networks
,”
J. Theor. Biol.
444
,
28
37
(
2018
).
59.
M.
Sun
,
Y.
Tao
, and
X.
Fu
, “
Asymmetrical dynamics of epidemic propagation and awareness diffusion in multiplex networks
,”
Chaos
31
,
093134
(
2021
).
60.
Y.
Zhou
,
J.
Zhou
,
G.
Chen
, and
H. E.
Stanley
, “
Effective degree theory for awareness and epidemic spreading on multiplex networks
,”
New J. Phys.
21
,
035002
(
2019
).
61.
M.
Xia
,
L.
Böttcher
, and
T.
Chou
, “
Controlling epidemics through optimal allocation of test kits and vaccine doses across networks
,”
IEEE Trans. Netw. Sci. Eng.
9
,
1422
1436
(
2022
).
62.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
63.
H.
Ebel
,
L.-I.
Mielsch
, and
S.
Bornholdt
, “
Scale-free topology of e-mail networks
,”
Phys. Rev. E
66
,
035103
(
2002
).
64.
A.-L.
Barabâsi
,
H.
Jeong
,
Z.
Néda
,
E.
Ravasz
,
A.
Schubert
, and
T.
Vicsek
, “
Evolution of the social network of scientific collaborations
,”
Phys. A
311
,
590
614
(
2002
).
65.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Diameter of the World-Wide Web
,”
Nature
401
,
130
131
(
1999
).
66.
L.
Danon
,
T. A.
House
,
J. M.
Read
, and
M. J.
Keeling
, “
Social encounter networks: Collective properties and disease transmission
,”
J. R. Soc. Interface
9
,
2826
2833
(
2012
).
67.
C.
Brown
,
A.
Noulas
,
C.
Mascolo
, and
V.
Blondel
, “
A place-focused model for social networks in cities
,” in
2013 International Conference on Social Computing
(
IEEE
,
2013
), pp.
75
80
.
68.
A. D.
Broido
and
A.
Clauset
, “
Scale-free networks are rare
,”
Nat. Commun.
10
,
1017
(
2019
).
69.
K.
Bringmann
,
R.
Keusch
, and
J.
Lengler
, “
Geometric inhomogeneous random graphs
,”
Theor. Comput. Sci.
760
,
35
54
(
2019
).
70.
G.
Ódor
,
D.
Czifra
,
J.
Komjáthy
,
L.
Lovász
, and
M.
Karsai
, “
Switchover phenomenon induced by epidemic seeding on geometric networks
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e2112607118
(
2021
).
71.
C. Y.
Liu
,
J.
Berlin
,
M. C.
Kiti
,
E.
Del Fava
,
A.
Grow
,
E.
Zagheni
,
A.
Melegaro
,
S. M.
Jenness
,
S. B.
Omer
,
B.
Lopman
, and
K.
Nelson
, “
Rapid review of social contact patterns during the COVID-19 pandemic
,”
Epidemiology
32
,
781
(
2021
).
72.
A.-L.
Barabási
,
R.
Albert
, and
H.
Jeong
, “
Mean-field theory for scale-free random networks
,”
Phys. A
272
,
173
187
(
1999
).
73.
J.
Jorritsma
, “Random graph visualizations,” Zenodo. .
74.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
,
378
382
(
2000
).
75.
R.
Cohen
,
K.
Erez
,
D.
Ben-Avraham
, and
S.
Havlin
, “
Resilience of the Internet to random breakdowns
,”
Phys. Rev. Lett.
85
,
4626
(
2000
).
76.
R.
Cohen
,
K.
Erez
,
D.
Ben-Avraham
, and
S.
Havlin
, “
Breakdown of the Internet under intentional attack
,”
Phys. Rev. Lett.
86
,
3682
(
2001
).
77.
D. T.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
,
403
434
(
1976
).
78.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
,
2340
2361
(
1977
).
79.
L.
Böttcher
and
H. J.
Herrmann
,
Computational Statistical Physics
(
Cambridge University Press
,
Cambridge, UK
,
2021
).
80.
R. K.
Wood
,
Bilevel Network Interdiction Models: Formulations and Solutions
, Wiley Encyclopedia of Operations Research and Management Science (
John Wiley & Sons
,
Hoboken, NJ
,
2011
).
81.
J. C.
Smith
and
Y.
Song
, “
A survey of network interdiction models and algorithms
,”
Eur. J. Oper. Res.
283
,
797
811
(
2020
).
82.
R.
Armitage
, “
Online ‘anti-vax’ campaigns and COVID-19: Censorship is not the solution
,”
Public Health
190
,
e29
(
2021
).
83.
S.
Xiao
,
G.
Xiao
, and
T. H.
Cheng
, “
Tolerance of intentional attacks in complex communication networks
,”
IEEE Commun. Mag.
46
,
146
152
(
2008
).
84.
G. D.
Koblentz
and
B. M.
Mazanec
, “
Viral warfare: The security implications of cyber and biological weapons
,”
Comp. Strategy
32
,
418
434
(
2013
).
You do not currently have access to this content.