In this paper, we propose a time-varying coupling function that results in enhanced synchronization in complex networks of oscillators. The stability of synchronization can be analyzed by applying the master stability approach, which considers the largest Lyapunov exponent of the linearized variational equations as a function of the network eigenvalues as the master stability function. Here, it is assumed that the oscillators have diffusive single-variable coupling. All possible single-variable couplings are studied for each time interval, and the one with the smallest local Lyapunov exponent is selected. The obtained coupling function leads to a decrease in the critical coupling parameter, resulting in enhanced synchronization. Moreover, synchronization is achieved faster, and its robustness is increased. For illustration, the optimum coupling function is found for three networks of chaotic Rössler, Chen, and Chua systems, revealing enhanced synchronization.

1.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
2.
I.
Belykh
,
M.
Di Bernardo
,
J.
Kurths
, and
M.
Porfiri
, “
Evolving dynamical networks
,”
Physica D
267
,
1
6
(
2014
).
3.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D.
Valladares
, and
C.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
4.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “
Synchronization: A universal concept in nonlinear science
,”
Am. J. Phys.
70
,
655
(
2002
).
5.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
).
6.
E.
Schöll
, “Synchronization in delay-coupled complex networks,” in Advances in Analysis and Control of Time-Delayed Dynamical Systems (World Scientific, 2013), pp. 57–84.
7.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
8.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
1564
(
2014
).
9.
N.
Frolov
and
A.
Hramov
, “
Extreme synchronization events in a Kuramoto model: The interplay between resource constraints and explosive transitions
,”
Chaos
31
,
063103
(
2021
).
10.
O. I.
Moskalenko
,
N. S.
Frolov
,
A. A.
Koronovskii
, and
A. E.
Hramov
, “
Amplification through chaotic synchronization in spatially extended beam-plasma systems
,”
Chaos
27
,
126701
(
2017
).
11.
B. O.
Olcay
,
M.
Özgören
, and
B.
Karaçalı
, “
On the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channels
,”
Neural Netw.
143
,
452
474
(
2021
).
12.
C.
Hammond
,
H.
Bergman
, and
P.
Brown
, “
Pathological synchronization in Parkinson’s disease: Networks, models and treatments
,”
Trends Neurosci.
30
,
357
364
(
2007
).
13.
E.
Schöll
, “
Partial synchronization patterns in brain networks
,”
Europhys. Lett.
136
,
18001
(
2021
).
14.
T. C.
Gouhier
,
F.
Guichard
, and
A.
Gonzalez
, “
Synchrony and stability of food webs in metacommunities
,”
Am. Nat.
175
,
E16
E34
(
2010
).
15.
C. H.
Totz
,
S.
Olmi
, and
E.
Schöll
, “
Control of synchronization in two-layer power grids
,”
Phys. Rev. E
102
,
022311
(
2020
).
16.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
, “
Collective nonlinear dynamics and self-organization in decentralized power grids
,”
Rev. Mod. Phys.
94
,
015005
(
2022
).
17.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
18.
H.
Gao
,
J.
Lam
, and
G.
Chen
, “
New criteria for synchronization stability of general complex dynamical networks with coupling delays
,”
Phys. Lett. A
360
,
263
273
(
2006
).
19.
J.
Sun
,
E. M.
Bollt
, and
T.
Nishikawa
, “
Master stability functions for coupled nearly identical dynamical systems
,”
Europhys. Lett.
85
,
60011
(
2009
).
20.
J.
Lu
and
G.
Chen
, “
A time-varying complex dynamical network model and its controlled synchronization criteria
,”
IEEE Trans. Autom. Control
50
,
841
846
(
2005
).
21.
C.-U.
Choe
,
T.
Dahms
,
P.
Hövel
, and
E.
Schöll
, “
Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states
,”
Phys. Rev. E
81
,
025205
(
2010
).
22.
V.
Flunkert
,
S.
Yanchuk
,
T.
Dahms
, and
E.
Schöll
, “
Synchronizing distant nodes: A universal classification of networks
,”
Phys. Rev. Lett.
105
,
254101
(
2010
).
23.
A.
Gjurchinovski
,
A.
Zakharova
, and
E.
Schöll
, “
Amplitude death in oscillator networks with variable-delay coupling
,”
Phys. Rev. E
89
,
032915
(
2014
).
24.
F.
Nazarimehr
,
S.
Panahi
,
M.
Jalili
,
M.
Perc
,
S.
Jafari
, and
B.
Ferčec
, “
Multivariable coupling and synchronization in complex networks
,”
Appl. Math. Comput.
372
,
124996
(
2020
).
25.
H.
Fan
,
Y.-C.
Lai
, and
X.
Wang
, “
Enhancing network synchronization by phase modulation
,”
Phys. Rev. E
98
,
012212
(
2018
).
26.
S.
Martineau
,
T.
Saffold
,
T. T.
Chang
, and
H.
Ronellenfitsch
, “
Enhancing synchronization by optimal correlated noise
,”
Phys. Rev. Lett.
128
,
098301
(
2022
).
27.
R.
Sevilla-Escoboza
,
R.
Gutierrez
,
G.
Huerta-Cuellar
,
S.
Boccaletti
,
J.
Gómez-Gardeñes
,
A.
Arenas
, and
J.
Buldú
, “
Enhancing the stability of the synchronization of multivariable coupled oscillators
,”
Phys. Rev. E
92
,
032804
(
2015
).
28.
A. E.
Motter
,
C.
Zhou
, and
J.
Kurths
, “
Network synchronization, diffusion, and the paradox of heterogeneity
,”
Phys. Rev. E
71
,
016116
(
2005
).
29.
M.
Chavez
,
D.-U.
Hwang
,
A.
Amann
,
H.
Hentschel
, and
S.
Boccaletti
, “
Synchronization is enhanced in weighted complex networks
,”
Phys. Rev. Lett.
94
,
218701
(
2005
).
30.
A. E.
Motter
,
C.
Zhou
, and
J.
Kurths
, “
Enhancing complex-network synchronization
,”
Europhys. Lett.
69
,
334
(
2005
).
31.
R.
Banerjee
,
B. K.
Bera
,
D.
Ghosh
, and
S. K.
Dana
, “
Enhancing synchronization in chaotic oscillators by induced heterogeneity
,”
Eur. Phys. J. Spec. Top.
226
,
1893
1902
(
2017
).
32.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
, “
Enhancing power grid synchronization and stability through time-delayed feedback control
,”
Phys. Rev. E
100
,
062306
(
2019
).
33.
M.
Hazrati
,
S.
Panahi
,
F.
Parastesh
,
S.
Jafari
, and
D.
Ghosh
, “
Role of links on the structural properties of different network topologies
,”
Europhys. Lett.
133
,
40001
(
2021
).
34.
S.
Rakshit
,
S.
Majhi
,
J.
Kurths
, and
D.
Ghosh
, “
Neuronal synchronization in long-range time-varying networks
,”
Chaos
31
,
073129
(
2021
).
35.
V.
Kohar
,
P.
Ji
,
A.
Choudhary
,
S.
Sinha
, and
J.
Kurths
, “
Synchronization in time-varying networks
,”
Phys. Rev. E
90
,
022812
(
2014
).
36.
S.
Rakshit
,
S.
Majhi
,
B. K.
Bera
,
S.
Sinha
, and
D.
Ghosh
, “
Time-varying multiplex network: Intralayer and interlayer synchronization
,”
Phys. Rev. E
96
,
062308
(
2017
).
37.
Z.
Hagos
,
T.
Stankovski
,
J.
Newman
,
T.
Pereira
,
P. V.
McClintock
, and
A.
Stefanovska
, “
Synchronization transitions caused by time-varying coupling functions
,”
Philos. Trans. R. Soc. A
377
,
20190275
(
2019
).
38.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
, “
Blinking model and synchronization in small-world networks with a time-varying coupling
,”
Physica D
195
,
188
206
(
2004
).
39.
D. J.
Stilwell
,
E. M.
Bollt
, and
D. G.
Roberson
, “
Sufficient conditions for fast switching synchronization in time-varying network topologies
,”
SIAM J. Appl. Dyn. Syst.
5
,
140
156
(
2006
).
40.
R.
Jeter
and
I.
Belykh
, “
Synchronization in on-off stochastic networks: Windows of opportunity
,”
IEEE Trans. Circuits Syst. I Regul. Pap.
62
,
1260
1269
(
2015
).
41.
F.
Parastesh
,
K.
Rajagopal
,
S.
Jafari
,
M.
Perc
, and
E.
Schöll
, “
Blinking coupling enhances network synchronization
,”
Phys. Rev. E
105
,
054304
(
2022
).
42.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
43.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
44.
G.
Chen
and
T.
Ueta
, “
Yet another chaotic attractor
,”
Int. J. Bifurcation Chaos
9
,
1465
1466
(
1999
).
45.
T.
Matsumoto
,
L.
Chua
, and
M.
Komuro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
32
,
797
818
(
1985
).
You do not currently have access to this content.