This paper proposes a recursive traffic percolation framework to capture the dynamics of cascading failures and analyze potential overloaded bottlenecks. In particular, compared to current work, the influence of external flow is considered, providing a new perspective for the study of regional commuting. Finally, we present an empirical study to verify the accuracy and effectiveness of our framework. Further analysis indicates that external flows from different regions affect the network. Our work requires only primary data and verifies the improvement of the functional network.

1.
C.
Fang
,
Y.
Chu
,
H.
Fu
, and
Y.
Fang
, “
On the resilience assessment of complementary transportation networks under natural hazards
,”
Transp. Res. D: Transp. Environ.
109
,
103331
(
2022
).
2.
Y.
Abebe
,
G.
Kabir
, and
S.
Tesfamariam
, “
Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian belief network model
,”
J. Cleaner Prod.
174
,
1629
1641
(
2018
).
3.
I.
Stamos
,
E.
Mitsakis
,
J. M.
Salanova
, and
G.
Aifadopoulou
, “
Impact assessment of extreme weather events on transport networks: A data-driven approach
,”
Transp. Res. D: Transp. Environ.
34
,
168
178
(
2015
).
4.
M. A.
Esfeh
,
L.
Kattan
,
W. H.
Lam
,
M.
Salari
, and
R. A.
Esfe
, “
Road network vulnerability analysis considering the probability and consequence of disruptive events: A spatiotemporal incident impact approach
,”
Transp. Res. C: Emerg. Technol.
136
,
103549
(
2022
).
5.
A. A.
Ganin
,
A. C.
Mersky
,
A. S.
Jin
,
M.
Kitsak
,
J. M.
Keisler
, and
I.
Linkov
, “
Resilience in intelligent transportation systems (ITS)
,”
Transp. Res. C: Emerg. Technol.
100
,
318
329
(
2019
).
6.
T.
Yamada
, “
Generalizing the probability of reaching a destination in case of route blockage
,”
Phys. A: Stat. Mech. Appl.
607
,
128163
(
2022
).
7.
S.
Chen
,
H.
Fu
,
N.
Wu
,
Y.
Wang
, and
Y.
Qiao
, “
Passenger-oriented traffic management integrating perimeter control and regional bus service frequency setting using 3D-pMFD
,”
Transp. Res. C: Emerg. Technol.
135
,
103529
(
2022
).
8.
H.
Hamedmoghadam
,
N.
Zheng
,
D.
Li
, and
H. L.
Vu
, “
Percolation-based dynamic perimeter control for mitigating congestion propagation in urban road networks
,”
Transp. Res. C: Emerg. Technol.
145
,
103922
(
2022
).
9.
S.
Gao
,
D.
Li
,
N.
Zheng
,
R.
Hu
, and
Z.
She
, “
Resilient perimeter control for hyper-congested two-region networks with MFD dynamics
,”
Transport. Res. B: Methods
156
,
50
75
(
2022
).
10.
Z.
Chen
and
D.
Han
, “Dynamics of cyber-physical systems for intelligent transportations,” in Intelligent Equipment, Robots, and Vehicles (Springer, 2021), pp. 511–520.
11.
K.
Jin
,
W.
Wang
,
X.
Li
,
X.
Hua
,
S.
Chen
, and
S.
Qin
, “
Identifying the critical road combination in urban roads network under multiple disruption scenarios
,”
Phys. A: Stat. Mech. Appl.
607
,
128192
(
2022
).
12.
C.
Li
,
W.
Yue
,
G.
Mao
, and
Z.
Xu
, “
Congestion propagation based bottleneck identification in urban road networks
,”
IEEE Trans. Veh. Technol.
69
,
4827
4841
(
2020
).
13.
A.
Bonasera
,
M.
Bruno
,
C. O.
Dorso
, and
P. F.
Mastinu
, “
Critical phenomena in nuclear fragmentation
,”
Riv. Nuovo Cimento
23
,
1
101
(
2000
).
14.
Y. G.
Ma
,
J. B.
Natowitz
,
R.
Wada
,
K.
Hagel
,
J.
Wang
,
T.
Keutgen
,
Z.
Majka
,
M.
Murray
,
L.
Qin
,
P.
Smith
,
R.
Alfaro
et al., “
Critical behavior in light nuclear systems: Experimental aspects
,”
Phys. Rev. C
71
,
054606
(
2005
).
15.
A.
Bunde
and
S.
Havlin
,
Fractals and Disordered Systems
(
Springer Science & Business Media
,
2012
).
16.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
2018
).
17.
F.
Radicchi
, “
Percolation in real interdependent networks
,”
Nat. Phys.
11
,
597
602
(
2015
).
18.
Z.
Wang
,
M.
Tang
,
S.
Cai
,
Y.
Liu
,
J.
Zhou
, and
D.
Han
, “
Self-awareness control effect of cooperative epidemics on complex networks
,”
Chaos
29
,
053123
(
2019
).
19.
X.
Li
,
X.
Zhang
,
C.
Zhao
, and
X.
Duan
, “
Identification of multiple influential spreaders on networks by percolation under the SIR model
,”
Chaos
31
,
051104
(
2021
).
20.
G.
Dong
,
N.
Wang
,
F.
Wang
,
T.
Qing
,
Y.
Liu
, and
A. L.
Vilela
, “
Network resilience of non-hub nodes failure under memory and non-memory based attacks with limited information
,”
Chaos
32
,
063110
(
2022
).
21.
Z.
Guo
,
Y.
Wang
,
J.
Zhong
,
C.
Fu
,
Y.
Sun
,
J.
Li
,
Z.
Chen
, and
G.
Wen
, “
Effect of load-capacity heterogeneity on cascading overloads in networks
,”
Chaos
31
,
123104
(
2021
).
22.
X.
Hu
,
Y.
Wang
,
H.
Wang
, and
Y.
Shi
, “
Hierarchical structure of the central areas of megacities based on the percolation theory—The example of Lujiazui, Shanghai
,”
Sustainability
14
,
9981
(
2022
).
23.
C.
Yang
and
Z.
Chen
, “Percolation on multi-layer network with joint storage and processing capacities,” in 2021 13th International Conference on Computer Modeling and Simulation (ACM, 2021), pp. 114–120; available at https://dl.acm.org/doi/abs/10.1145/3474963.3474979.
24.
C.
Fan
,
X.
Jiang
, and
A.
Mostafavi
, “
A network percolation-based contagion model of flood propagation and recession in urban road networks
,”
Sci. Rep.
10
,
1
12
(
2020
).
25.
Y.
Shang
, “
Feature-enriched core percolation in multiplex networks
,”
Phys. Rev. E
106
,
054314
(
2022
).
26.
D.
Li
,
B.
Fu
,
Y.
Wang
,
G.
Lu
,
Y.
Berezin
,
H. E.
Stanley
, and
S.
Havlin
, “
Percolation transition in dynamical traffic network with evolving critical bottlenecks
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
669
672
(
2015
).
27.
M.
Saberi
,
H.
Hamedmoghadam
,
M.
Ashfaq
,
S. A.
Hosseini
,
Z.
Gu
,
S.
Shafiei
,
D. J.
Nair
,
V.
Dixit
,
L.
Gardner
,
S. T.
Waller
, and
M. C.
González
, “
A simple contagion process describes spreading of traffic jams in urban networks
,”
Nat. Commun.
11
,
1
9
(
2020
).
28.
H.
Hamedmoghadam
,
M.
Jalili
,
H. L.
Vu
, and
L.
Stone
, “
Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks
,”
Nat. Commun.
12
,
1
10
(
2021
).
29.
G.
Zeng
,
D.
Li
,
S.
Guo
,
L.
Gao
,
Z.
Gao
,
H. E.
Stanley
, and
S.
Havlin
, “
Switch between critical percolation modes in city traffic dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
23
28
(
2019
).
30.
A. E.
Motter
and
Y.-C.
Lai
, “
Cascade-based attacks on complex networks
,”
Phys. Rev. E
66
,
065102
(
2002
).
31.
A. E.
Motter
, “
Cascade control and defense in complex networks
,”
Phys. Rev. Lett.
93
,
098701
(
2004
).
32.
P.
Crucitti
,
V.
Latora
, and
M.
Marchiori
, “
Model for cascading failures in complex networks
,”
Phys. Rev. E
69
,
045104
(
2004
).
33.
R.
Burkholz
and
F.
Schweitzer
, “
Framework for cascade size calculations on random networks
,”
Phys. Rev. E
97
,
042312
(
2018
).
34.
A. A.
Ganin
,
M.
Kitsak
,
D.
Marchese
,
J. M.
Keisler
,
T.
Seager
, and
I.
Linkov
, “
Resilience and efficiency in transportation networks
,”
Sci. Adv.
3
,
e1701079
(
2017
).
35.
F.
Simini
,
M. C.
González
,
A.
Maritan
, and
A.-L.
Barabási
, “
A universal model for mobility and migration patterns
,”
Nature
484
,
96
100
(
2012
).
36.
WorldPop and C. U. Center for International Earth Science Information Network (CIESIN)
, “Global high resolution population denominators project” (2018).
37.
G.
Voronoi
, “
Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs
,”
J. Reine Angew. Math.
1908
,
198
287
(
1908
).
38.
G. K.
Zipf
, “
The P1P2/D hypothesis: On the intercity movement of persons
,”
Am. Sociol. Rev.
11
,
677
686
(
1946
).
39.
W.-S.
Jung
,
F.
Wang
, and
H. E.
Stanley
, “
Gravity model in the Korean highway
,”
EPL (Europhys. Lett.)
81
,
48005
(
2008
).
40.
J.
de Dios Ortúzar
and
L. G.
Willumsen
,
Modelling Transport
(
John Wiley & Sons
,
2011
).
41.
Y.
He
,
C.
Zhao
, and
A.
Zeng
, “
Ranking locations in a city via the collective home-work relations in human mobility data
,”
Phys. A: Stat. Mech. Appl.
608
,
128283
(
2022
).
42.
C. F.
Daganzo
, “
The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory
,”
Transport. Res. B: Meth.
28
,
269
287
(
1994
).
43.
M.
Haklay
and
P.
Weber
, “
Openstreetmap: User-generated street maps
,”
IEEE Pervasive Comput.
7
,
12
18
(
2008
).
44.
G.
Boeing
, “
Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks
,”
Comput. Environ. Urban Syst.
65
,
126
139
(
2017
).
45.
Baidu
, “Traffic API” (2018).
46.
D.
Braess
, “
Über ein paradoxon aus der verkehrsplanung
,”
Unternehmensforschung
12
,
258
268
(
1968
).
You do not currently have access to this content.