Spatially extended patterns and multistability of possible different states are common in many ecosystems, and their combination has an important impact on their dynamical behaviors. One potential combination involves tristability between a patterned state and two different uniform states. Using a simplified version of the Gilad–Meron model for dryland ecosystems, we study the organization, in bifurcation terms, of the localized structures arising in tristable regimes. These states are generally related to the concept of wave front locking and appear in the form of spots and gaps of vegetation. We find that the coexistence of localized spots and gaps, within tristable configurations, yields the appearance of hybrid states. We also study the emergence of spatiotemporal localized states consisting of a portion of a periodic pattern embedded in a uniform Hopf-like oscillatory background in a subcritical Turing–Hopf dynamical regime.

1
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
2
M.
Cross
and
H.
Greenside
,
Pattern Formation and Dynamics in Nonequilibrium Systems
(
Cambridge University Press
,
Cambridge
,
2009
).
3
Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, edited by N. Akhmediev and A. Ankiewicz (Springer-Verlag, Berlin, 2008).
4
Localized States in Physics: Solitons and Patterns, edited by O. Descalzi, M. G. Clerc, S. Residori, and G. Assanto (Springer-Verlag, Berlin, 2011).
5
E.
Knobloch
, “
Spatial localization in dissipative systems
,”
Annu. Rev. Condens. Matter Phys.
6
,
325
359
(
2015
).
6
F.
Al Saadi
,
A.
Champneys
,
A.
Worthy
, and
A.
Msmali
, “
Stationary and oscillatory localized patterns in ratio-dependent predator–prey systems
,”
IMA J. Appl. Math.
86
,
808
827
(
2021
).
7
P.
Coullet
,
C.
Elphick
, and
D.
Repaux
, “
Nature of spatial chaos
,”
Phys. Rev. Lett.
58
,
4
(
1987
).
8
O.
Thual
and
S.
Fauve
, “
Localized structures generated by subcritical instabilities
,”
J. Phys.
49
,
1829
1833
(
1988
).
9
P.
Coullet
, “
Localized patterns and fronts in nonequilibrium systems
,”
Int. J. Bifurc. Chaos
12
,
2445
2457
(
2002
).
10
W. A.
Macfadyen
, “
Vegetation patterns in the semi-desert plains of British Somaliland
,”
Geogr. J.
116
,
199
211
(
1950
).
11
T.
Becker
and
S.
Getzin
, “
The fairy circles of Kaokoland (North-West Namibia) origin, distribution, and characteristics
,”
Basic Appl. Ecol.
1
,
149
159
(
2000
).
12
M. W.
van Rooyen
,
G. K.
Theron
,
N.
van Rooyen
,
W. J.
Jankowitz
, and
W. S.
Matthews
, “
Mysterious circles in the Namib Desert: Review of hypotheses on their origin
,”
J. Arid Environ.
57
,
467
485
(
2004
).
13
E.
Meron
,
H.
Yizhaq
, and
E.
Gilad
, “
Localized structures in dryland vegetation: Forms and functions
,”
Chaos
17
,
037109
(
2007
).
14
V.
Deblauwe
,
P.
Couteron
,
O.
Lejeune
,
J.
Bogaert
, and
N.
Barbier
, “
Environmental modulation of self-organized periodic vegetation patterns in Sudan
,”
Ecography
34
,
990
1001
(
2011
).
15
E.
Meron
, “
Pattern-formation approach to modelling spatially extended ecosystems
,”
Ecol. Modell.
234
,
70
82
(
2012
).
16
W. R.
Tschinkel
, “
Experiments testing the causes of Namibian fairy circles
,”
PLoS One
10
,
e0140099
(
2015
).
17
S.
Getzin
,
H.
Yizhaq
,
B.
Bell
,
T. E.
Erickson
,
A. C.
Postle
,
I.
Katra
,
O.
Tzuk
,
Y. R.
Zelnik
,
K.
Wiegand
,
T.
Wiegand
, and
E.
Meron
, “
Discovery of fairy circles in Australia supports self-organization theory
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
3551
3556
(
2016
).
18
D.
Ruiz-Reynés
,
D.
Gomila
,
T.
Sintes
,
E.
Hernández-García
,
N.
Marbà
, and
C. M.
Duarte
, “
Fairy circle landscapes under the sea
,”
Sci. Adv.
3
,
e1603262
(
2017
).
19
O.
Lejeune
,
M.
Tlidi
, and
P.
Couteron
, “
Localized vegetation patches: A self-organized response to resource scarcity
,”
Phys. Rev. E
66
,
010901
(
2002
).
20
D.
Escaff
,
C.
Fernández-Oto
,
M. G.
Clerc
, and
M.
Tlidi
, “
Localized vegetation patterns, fairy circles, and localized patches in arid landscapes
,”
Phys. Rev. E
91
,
022924
(
2015
).
21
Y. R.
Zelnik
,
S.
Kinast
,
H.
Yizhaq
,
G.
Bel
, and
E.
Meron
, “
Regime shifts in models of dryland vegetation
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120358
(
2013
).
22
M.
Tlidi
,
R.
Lefever
, and
A.
Vladimirov
, “On vegetation clustering, localized bare soil spots and fairy circles,” in Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics (Springer, Berlin, 2008), pp. 1–22.
23
C.
Fernández-Oto
,
M.
Tlidi
,
D.
Escaff
, and
M. G.
Clerc
, “
Strong interaction between plants induces circular barren patches: Fairy circles
,”
Philos. Trans. R. Soc. London, Ser. A
372
,
20140009
(
2014
).
24
Y. R.
Zelnik
,
E.
Meron
, and
G.
Bel
, “
Localized states qualitatively change the response of ecosystems to varying conditions and local disturbances
,”
Ecol. Complex.
25
,
26
34
(
2016
).
25
E.
Sheffer
,
H.
Yizhaq
,
E.
Gilad
,
M.
Shachak
, and
E.
Meron
, “
Why do plants in resource-deprived environments form rings?
,”
Ecol. Complex.
4
,
192
200
(
2007
).
26
E.
Sheffer
,
H.
Yizhaq
,
M.
Shachak
, and
E.
Meron
, “
Mechanisms of vegetation-ring formation in water-limited systems
,”
J. Theor. Biol.
273
,
138
146
(
2011
).
27
H.
Yizhaq
,
I.
Stavi
,
N.
Swet
,
E.
Zaady
, and
I.
Katra
, “
Vegetation ring formation by water overland flow in water-limited environments: Field measurements and mathematical modeling
,”
Ecohydrology
12
,
e2135
(
2019
).
28
Y. R.
Zelnik
,
H.
Uecker
,
U.
Feudel
, and
E.
Meron
, “
Desertification by front propagation?
,”
J. Theor. Biol.
418
,
27
35
(
2017
).
29
M.
Scheffer
,
S.
Carpenter
,
J. A.
Foley
,
C.
Folke
, and
B.
Walker
, “
Catastrophic shifts in ecosystems
,”
Nature
413
,
591
596
(
2001
).
30
G.
Bel
,
A.
Hagberg
, and
E.
Meron
, “
Gradual regime shifts in spatially extended ecosystems
,”
Theor. Ecol.
5
,
591
604
(
2012
).
31
O.
Franklin
,
S. P.
Harrison
,
R.
Dewar
,
C. E.
Farrior
,
Å.
Brännström
,
U.
Dieckmann
,
S.
Pietsch
,
D.
Falster
,
W.
Cramer
,
M.
Loreau
,
H.
Wang
,
A.
Mäkelä
,
K. T.
Rebel
,
E.
Meron
,
S. J.
Schymanski
,
E.
Rovenskaya
,
B. D.
Stocker
,
S.
Zaehle
,
S.
Manzoni
,
M.
van Oijen
,
I. J.
Wright
,
P.
Ciais
,
P. M.
van Bodegom
,
J.
Peñuelas
,
F.
Hofhansl
,
C.
Terrer
,
N. A.
Soudzilovskaia
,
G.
Midgley
, and
I. C.
Prentice
, “
Organizing principles for vegetation dynamics
,”
Nat. Plants
6
,
444
453
(
2020
).
32
P.
Parra-Rivas
and
C.
Fernandez-Oto
, “
Formation of localized states in dryland vegetation: Bifurcation structure and stability
,”
Phys. Rev. E
101
,
052214
(
2020
).
33
Y. R.
Zelnik
,
E.
Meron
, and
G.
Bel
, “
Gradual regime shifts in fairy circles
,”
Proc. Natl. Acad. Sci. U.S.A.
112
,
12327
12331
(
2015
).
34
Y. R.
Zelnik
and
O.
Tzuk
, “
Wavelength selection beyond Turing
,”
Eur. Phys. J. Spec. Top.
226
,
2171
2184
(
2017
).
35
E.
Gilad
,
J.
von Hardenberg
,
A.
Provenzale
,
M.
Shachak
, and
E.
Meron
, “
Ecosystem engineers: From pattern formation to habitat creation
,”
Phys. Rev. Lett.
93
,
098105
(
2004
).
36
E.
Meron
, “
Pattern formation—A missing link in the study of ecosystem response to environmental changes
,”
Math. Biosci.
271
,
1
18
(
2016
).
37
C.
Fernández-Oto
,
O.
Tzuk
, and
E.
Meron
, “
Front instabilities can reverse desertification
,”
Phys. Rev. Lett.
122
,
048101
(
2019
).
38
O.
Tzuk
,
S. R.
Ujjwal
,
C.
Fernandez-Oto
,
M.
Seifan
, and
E.
Meron
, “
Interplay between exogenous and endogenous factors in seasonal vegetation oscillations
,”
Sci. Rep.
9
,
354
(
2019
).
39
C.
Fernandez-Oto
,
O.
Tzuk
, and
E.
Meron
, “
Front instabilities can reverse desertification
,”
Phys. Rev. Lett.
122
,
048101
(
2019
).
40
J. H. P.
Dawes
and
J. L. M.
Williams
, “
Localised pattern formation in a model for dryland vegetation
,”
J. Math. Biol.
73
,
63
90
(
2016
).
41
Y. R.
Zelnik
,
P.
Gandhi
,
E.
Knobloch
, and
E.
Meron
, “
Implications of tristability in pattern-forming ecosystems
,”
Chaos
28
,
033609
(
2018
).
42
P.
Gandhi
,
Y. R.
Zelnik
, and
E.
Knobloch
, “
Spatially localized structures in the Gray-Scott model
,”
Philos. Trans. R. Soc. London, Ser. A
376
,
20170375
(
2018
).
43
O.
Jaïbi
,
A.
Doelman
,
M.
Chirilus-Bruckner
, and
E.
Meron
, “
The existence of localized vegetation patterns in a systematically reduced model for dryland vegetation
,”
Phys. D: Nonlinear Phenom.
412
,
132637
(
2020
).
44
M.
Meixner
,
A.
De Wit
,
S.
Bose
, and
E.
Schöll
, “
Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations
,”
Phys. Rev. E
55
,
6690
6697
(
1997
).
45
W.
Just
,
M.
Bose
,
S.
Bose
,
H.
Engel
, and
E.
Schöll
, “
Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system
,”
Phys. Rev. E
64
,
026219
(
2001
).
46
E. L.
Allgower
and
K.
Georg
, Numerical Continuation Methods: An Introduction, Springer Series in Computational Mathematics (Springer-Verlag, Berlin, 1990).
47
Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Understanding Complex Systems, edited by B. Krauskopf, H. M. Osinga, and J. Galan-Vioque (Springer Netherlands, 2007).
48
H.
Uecker
, Numerical Continuation and Bifurcation in Nonlinear PDEs, Other Titles in Applied Mathematics (Society for Industrial and Applied Mathematics, 2021).
49
E. J.
Doedel
,
T. F.
Fairgrieve
,
B.
Sandstede
,
A. R.
Champneys
,
Y. A.
Kuznetsov
, and
X.
Wang
, “AUTO-07P: Continuation and bifurcation software for ordinary differential equations,” Technical Report, 2007.
50
P.
Colet
,
M. A.
Matías
,
L.
Gelens
, and
D.
Gomila
, “
Formation of localized structures in bistable systems through nonlocal spatial coupling. I. General framework
,”
Phys. Rev. E
89
,
012914
(
2014
).
51
P. D.
Woods
and
A. R.
Champneys
, “
Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian–Hopf bifurcation
,”
Phys. D: Nonlinear Phenom.
129
,
147
170
(
1999
).
52
P.
Coullet
,
C.
Riera
, and
C.
Tresser
, “
Stable static localized structures in one dimension
,”
Phys. Rev. Lett.
84
,
3069
3072
(
2000
).
53
E.
Makrides
and
B.
Sandstede
, “
Existence and stability of spatially localized patterns
,”
J. Differ. Equ.
266
,
1073
1120
(
2019
).
54
J.
Knobloch
and
T.
Wagenknecht
, “
Homoclinic snaking near a heteroclinic cycle in reversible systems
,”
Phys. D: Nonlinear Phenom.
206
,
82
93
(
2005
).
55
P.
Parra-Rivas
,
A. R.
Champneys
,
F.
Al-Sahadi
,
D.
Gomila
, and
E.
Knobloch
, “Organization of spatially localized structures near a codimension-three cusp-Turing bifurcation,” arXiv:2208.04009 (2022).
56
U.
Bortolozzo
,
M. G.
Clerc
, and
S.
Residori
, “
Solitary localized structures in a liquid crystal light-valve experiment
,”
New J. Phys.
11
,
093037
(
2009
).
57
F.
Borgogno
,
P.
D’Odorico
,
F.
Laio
, and
L.
Ridolfi
, “
Mathematical models of vegetation pattern formation in ecohydrology
,”
Rev. Geophys.
47
,
RG1005
, https://doi.org/10.1029/2007RG000256 (
2009
).
58
P.
Couteron
,
F.
Anthelme
,
M.
Clerc
,
D.
Escaff
,
C.
Fernández-Oto
, and
M.
Tlidi
, “
Plant clonal morphologies and spatial patterns as self-organized responses to resource-limited environments
,”
Philos. Trans. R. Soc. London, Ser. A
372
,
20140102
(
2014
).
59
W. J.
Jankowitz
,
M. W. V.
Rooyen
,
D.
Shaw
,
J. S.
Kaumba
, and
N. V.
Rooyen
, “
Mysterious circles in the Namib Desert
,”
S. Afr. J. Bot.
74
,
332
334
(
2008
).
60
J.
Burke
and
E.
Knobloch
, “
Homoclinic snaking: Structure and stability
,”
Chaos
17
,
037102
(
2007
).
61
J.
Burke
and
E.
Knobloch
, “
Snakes and ladders: Localized states in the Swift–Hohenberg equation
,”
Phys. Lett. A
360
,
681
688
(
2007
).
62
M.
Haragus
and
G.
Iooss
, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext (Springer-Verlag, London, 2011).
63
P.
Parra-Rivas
,
D.
Gomila
,
L.
Gelens
, and
E.
Knobloch
, “
Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion
,”
Phys. Rev. E
97
,
042204
(
2018
).
64
F.
Al Saadi
and
A.
Champneys
, “
Unified framework for localized patterns in reaction–diffusion systems; The Gray–Scott and Gierer–Meinhardt cases
,”
Philos. Trans. R. Soc. London, Ser. A
379
,
20200277
(
2021
).
65
F.
Al Saadi
,
A.
Worthy
,
H.
Alrihieli
, and
M.
Nelson
, “
Localised spatial structures in the Thomas model
,”
Math. Comput. Simul.
194
,
141
158
(
2022
).
66
P.
Parra-Rivas
,
E.
Knobloch
,
L.
Gelens
, and
D.
Gomila
, “
Origin, bifurcation structure and stability of localized states in Kerr dispersive optical cavities
,”
IMA J. Appl. Math.
86
,
856
895
(
2021
).
67
P.
Borckmans
,
O.
Jensen
,
V. O.
Pannbacker
,
E.
Mosekilde
,
G.
Dewel
, and
A.
De Wit
, “Localized Turing and Turing-Hopf patterns,” in Modelling the Dynamics of Biological Systems: Nonlinear Phenomena and Pattern Formation, Springer Series in Synergetics, edited by E. Mosekilde and O. G. Mouritsen (Springer, Berlin, 1995), pp. 48–73.
68
A.
De Wit
,
D.
Lima
,
G.
Dewel
, and
P.
Borckmans
, “
Spatiotemporal dynamics near a codimension-two point
,”
Phys. Rev. E
54
,
261
271
(
1996
).
69
M.
Tlidi
,
P.
Mandel
, and
M.
Haelterman
, “
Spatiotemporal patterns and localized structures in nonlinear optics
,”
Phys. Rev. E
56
,
6524
6530
(
1997
).
70
J. C.
Tzou
,
Y.-P.
Ma
,
A.
Bayliss
,
B. J.
Matkowsky
, and
V. A.
Volpert
, “
Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model
,”
Phys. Rev. E
87
,
022908
(
2013
).
71
G.
Heidemann
,
M.
Bode
, and
H. G.
Purwins
, “
Fronts between Hopf- and Turing-type domains in a two-component reaction-diffusion system
,”
Phys. Lett. A
177
,
225
230
(
1993
).
72
P.
Kolodner
, “
Coexisting traveling waves and steady rolls in binary-fluid convection
,”
Phys. Rev. E
48
,
R665
R668
(
1993
).
73
H.
Uecker
,
D.
Wetzel
, and
J. D. M.
Rademacher
, “
pde2path—A Matlab package for continuation and bifurcation in 2D elliptic systems
,”
Numer. Math. Theory Methods Appl.
7
,
58
106
(
2014
).
74
P.
Parra-Rivas
,
C.
Mas-Arabí
, and
F.
Leo
, “Parametric localized patterns and breathers in dispersive quadratic cavities,” arXiv:2003.09941 (2020).
75
O.
Tzuk
,
S. R.
Ujjwal
,
C.
Fernandez-Oto
,
M.
Seifan
, and
E.
Meron
, “
Period doubling as an indicator for ecosystem sensitivity to climate extremes
,”
Sci. Rep.
9
,
19577
(
2019
).
76
D.
Ruiz-Reynés
,
E.
Mayol
,
T.
Sintes
,
I. E.
Hendriks
,
E.
Hernández-García
,
C. M.
Duarte
,
N.
Marbà
, and
D.
Gomila
, “
Self-organized sulfide-driven traveling pulses shape seagrass meadows
,”
Proc. Natl. Acad. Sci. U.S.A.
120
,
e2216024120
(
2023
).
77
E. M.
Izhikevich
, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Computational Neuroscience (MIT Press, Cambridge, MA, 2007), OCLC: ocm65400606.
78
D. J. B.
Lloyd
,
B.
Sandstede
,
D.
Avitabile
, and
A. R.
Champneys
, “
Localized hexagon patterns of the planar Swift–Hohenberg equation
,”
SIAM J. Appl. Dyn. Syst.
7
,
1049
1100
(
2008
).
79
S.
McCalla
and
B.
Sandstede
, “
Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study
,”
Phys. D: Nonlinear Phenom.
239
,
1581
1592
(
2010
).
80
Y. P.
Ma
and
E.
Knobloch
, “
Two-dimensional localized structures in harmonically forced oscillatory systems
,”
Phys. D: Nonlinear Phenom.
337
,
1
17
(
2016
).
81
D.
Gomila
and
E.
Knobloch
, “
Curvature effects and radial homoclinic snaking
,”
IMA J. Appl. Math.
86
,
1094
1111
(
2021
).
82
N.
Verschueren
,
E.
Knobloch
, and
H.
Uecker
, “
Localized and extended patterns in the cubic-quintic Swift-Hohenberg equation on a disk
,”
Phys. Rev. E
104
,
014208
(
2021
).
You do not currently have access to this content.