This work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes and and the terms of its decomposition evidencing either the individual entropy rates of and and their joint entropy rate, or the transfer entropies from to and from to and the instantaneous information shared by and . All measures are estimated through discretization of the random variables forming the processes, performed either via uniform quantization (binning approach) or rank ordering (permutation approach). The binning and permutation approaches are compared on simulations of two coupled non-identical Hènon systems and on three datasets, including short realizations of cardiorespiratory (CR, heart period and respiration flow), cardiovascular (CV, heart period and systolic arterial pressure), and cerebrovascular (CB, mean arterial pressure and cerebral blood flow velocity) measured in different physiological conditions, i.e., spontaneous vs paced breathing or supine vs upright positions. Our results show that, with careful selection of the estimation parameters (i.e., the embedding dimension and the number of quantization levels for the binning approach), meaningful patterns of the MIR and of its components can be achieved in the analyzed systems. On physiological time series, we found that paced breathing at slow breathing rates induces less complex and more coupled CR dynamics, while postural stress leads to unbalancing of CV interactions with prevalent baroreflex coupling and to less complex pressure dynamics with preserved CB interactions. These results are better highlighted by the permutation approach, thanks to its more parsimonious representation of the discretized dynamic patterns, which allows one to explore interactions with longer memory while limiting the curse of dimensionality.
Skip Nav Destination
Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions
Article navigation
March 2023
Research Article|
March 16 2023
Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions
Special Collection:
Ordinal Methods: Concepts, Applications, New Developments and Challenges
Chiara Barà
;
Chiara Barà
(Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft)
1
Department of Engineering, University of Palermo
, 90128 Palermo, Italy
Search for other works by this author on:
Laura Sparacino
;
Laura Sparacino
(Formal analysis, Methodology, Writing – original draft)
1
Department of Engineering, University of Palermo
, 90128 Palermo, Italy
Search for other works by this author on:
Riccardo Pernice
;
Riccardo Pernice
(Investigation, Validation, Writing – original draft)
1
Department of Engineering, University of Palermo
, 90128 Palermo, Italy
Search for other works by this author on:
Yuri Antonacci
;
Yuri Antonacci
(Formal analysis, Investigation, Methodology)
1
Department of Engineering, University of Palermo
, 90128 Palermo, Italy
Search for other works by this author on:
Alberto Porta
;
Alberto Porta
(Data curation, Supervision, Validation, Writing – review & editing)
2
Department of Biomedical Sciences for Health, University of Milan
, 20133 Milan, Italy
3
Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato
, 20097 San Donato Milanese Milan, Italy
Search for other works by this author on:
Dimitris Kugiumtzis
;
Dimitris Kugiumtzis
(Conceptualization, Validation, Writing – review & editing)
4
Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
, 54124 Thessaloniki, Greece
Search for other works by this author on:
Luca Faes
Luca Faes
a)
(Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing)
1
Department of Engineering, University of Palermo
, 90128 Palermo, Italy
a)Author to whom correspondence should be addressed: luca.faes@unipa.it
Search for other works by this author on:
a)Author to whom correspondence should be addressed: luca.faes@unipa.it
Note: This paper is part of the Focus Issue on Ordinal Methods: Concepts, Applications, New Developments and Challenges.
Chaos 33, 033127 (2023)
Article history
Received:
December 29 2022
Accepted:
February 17 2023
Citation
Chiara Barà, Laura Sparacino, Riccardo Pernice, Yuri Antonacci, Alberto Porta, Dimitris Kugiumtzis, Luca Faes; Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions. Chaos 1 March 2023; 33 (3): 033127. https://doi.org/10.1063/5.0140641
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00