We study numerically the spatiotemporal dynamics in a ring network of nonlocally coupled nonlinear oscillators, each represented by a two-dimensional discrete-time model of the classical van der Pol oscillator. It is shown that the discretized oscillator exhibits richer behavior, combining the peculiarities of both the original system and its own dynamics. Moreover, a large variety of spatiotemporal structures is observed in the network of discrete van der Pol oscillators when the discretization parameter and the coupling strength are varied. Regimes, such as the coexistence of a multichimera state/a traveling wave and a solitary state are revealed for the first time and are studied in detail. It is established that the majority of the observed chimera/solitary states, including the newly found ones, are transient toward a purely traveling wave mode. The peculiarities of the transition process and the lifetime (transient duration) of the chimera structures and the solitary state are analyzed depending on the system parameters, the observation time, initial conditions, and the influence of external noise.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Cambridge University Press
,
2001
).
2.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
,
268
276
(
2001
).
3.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
(
2002
).
4.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
5.
A.
Balanov
,
N.
Janson
,
D.
Postnov
, and
O.
Sosnovtseva
,
Synchronization: From Simple to Complex
(
Springer
,
2009
).
6.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
).
7.
A.
Cardillo
,
M.
Zanin
,
J.
Gómez-Gardenes
,
M.
Romance
,
A. J.
García del Amo
, and
S.
Boccaletti
, “
Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures
,”
Eur. Phys. J. Spec. Top.
215
,
23
33
(
2013
).
8.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Chimera states on the route from coherence to rotating waves
,”
Phys. Rev. E
91
,
022907
(
2015
).
9.
N.
Semenova
,
G.
Strelkova
,
V.
Anishchenko
, and
A.
Zakharova
, “
Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators
,”
Chaos
27
,
061102
(
2017
).
10.
S.-I.
Amari
, “
Dynamics of pattern formation in lateral-inhibition type neural fields
,”
Biol. Cybern.
27
,
77
87
(
1977
).
11.
A.
Compte
,
N.
Brunel
,
P. S.
Goldman-Rakic
, and
X.-J.
Wang
, “
Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model
,”
Cereb. Cortex
10
,
910
923
(
2000
).
12.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
,
R67
(
2015
).
13.
E.
Schöll
, “
Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics
,”
Eur. Phys. J. Spec. Top.
225
,
891
919
(
2016
).
14.
S. S.
Muni
,
S.
Padhee
, and
K. C.
Pati
,
A Study on the Synchronization Aspect of Star Connected Identical Chua’s Circuits
(
IEEE
,
2018
), pp. 1–6.
15.
A.
Belyaev
and
L.
Ryashko
,
Regular and Chaotic Regimes in the System of Coupled Populations
(
AIP Publishing LLC
,
2020
), p. 070023.
16.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
17.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
18.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
, “
Loss of coherence in dynamical networks: Spatial chaos and chimera states
,”
Phys. Rev. Lett.
106
,
234102
(
2011
).
19.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Different types of chimera states: An interplay between spatial and dynamical chaos
,”
Phys. Rev. E
90
,
032920
(
2014
).
20.
A. V.
Slepnev
,
A. V.
Bukh
, and
T. E.
Vadivasova
, “
Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity
,”
Nonlinear Dyn.
88
,
2983
2992
(
2017
).
21.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
, “
Chimera death: Symmetry breaking in dynamical networks
,”
Phys. Rev. Lett.
112
,
154101
(
2014
).
22.
S.
Ulonska
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in networks of van der Pol oscillators with hierarchical connectivities
,”
Chaos
26
,
094825
(
2016
).
23.
N.
Semenova
,
A.
Zakharova
,
V.
Anishchenko
, and
E.
Schöll
, “
Coherence-resonance chimeras in a network of excitable elements
,”
Phys. Rev. Lett.
117
,
014102
(
2016
).
24.
N.
Tsigkri-DeSmedt
,
J.
Hizanidis
,
P.
Hövel
, and
A.
Provata
, “
Multi-chimera states and transitions in the leaky integrate-and-fire model with nonlocal and hierarchical connectivity
,”
Eur. Phys. J. Spec. Top.
225
,
1149
1164
(
2016
).
25.
A.
Buscarino
,
M.
Frasca
,
L. V.
Gambuzza
, and
P.
Hövel
, “
Chimera states in time-varying complex networks
,”
Phys. Rev. E
91
,
022817
(
2015
).
26.
I.
Omelchenko
,
A.
Provata
,
J.
Hizanidis
,
E.
Schöll
, and
P.
Hövel
, “
Robustness of chimera states for coupled FitzHugh-Nagumo oscillators
,”
Phys. Rev. E
91
,
022917
(
2015
).
27.
T.
Banerjee
,
P. S.
Dutta
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera patterns induced by distance-dependent power-law coupling in ecological networks
,”
Phys. Rev. E
94
,
032206
(
2016
).
28.
S.
Ghosh
,
A.
Kumar
,
A.
Zakharova
, and
S.
Jalan
, “
Birth and death of chimera: Interplay of delay and multiplexing
,”
Europhys. Lett.
115
,
60005
(
2016
).
29.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Chimera states in a multilayer network of coupled and uncoupled neurons
,”
Chaos
27
,
073109
(
2017
).
30.
D.
Kasatkin
,
S.
Yanchuk
,
E.
Schöll
, and
V.
Nekorkin
, “
Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings
,”
Phys. Rev. E
96
,
062211
(
2017
).
31.
A.
Bukh
,
E.
Rybalova
,
N.
Semenova
,
G.
Strelkova
, and
V.
Anishchenko
, “
New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps
,”
Chaos
27
,
111102
(
2017
).
32.
J.
Sawicki
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in complex networks: Interplay of fractal topology and delay
,”
Eur. Phys. J. Spec. Top.
226
,
1883
1892
(
2017
).
33.
A. M.
Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
, “
Experimental observation of chimeras in coupled-map lattices
,”
Nat. Phys.
8
,
658
661
(
2012
).
34.
L.
Larger
,
B.
Penkovsky
, and
Y.
Maistrenko
, “
Virtual chimera states for delayed-feedback systems
,”
Phys. Rev. Lett.
111
,
054103
(
2013
).
35.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourriere
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
10563
10567
(
2013
).
36.
T.
Kapitaniak
,
P.
Kuzma
,
J.
Wojewoda
,
K.
Czolczynski
, and
Y.
Maistrenko
, “
Imperfect chimera states for coupled pendula
,”
Sci. Rep.
4
,
6379
(
2014
).
37.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
, “
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
,”
Phys. Rev. E
90
,
032905
(
2014
).
38.
D. P.
Rosin
,
D.
Rontani
,
N. D.
Haynes
,
E.
Schöll
, and
D. J.
Gauthier
, “
Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators
,”
Phys. Rev. E
90
,
030902
(
2014
).
39.
L.
Schmidt
,
K.
Schönleber
,
K.
Krischer
, and
V.
García-Morales
, “
Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling
,”
Chaos
24
,
013102
(
2014
).
40.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
,
662
665
(
2012
).
41.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns
,”
PloS One
8
,
e80586
(
2013
).
42.
J.
Shena
,
J.
Hizanidis
,
V.
Kovanis
, and
G. P.
Tsironis
, “
Turbulent chimeras in large semiconductor laser arrays
,”
Sci. Rep.
7
,
42116
(
2017
).
43.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
,”
Phys. Rev. E
89
,
060901
(
2014
).
44.
R.
Berner
,
A.
Polanska
,
E.
Schöll
, and
S.
Yanchuk
, “
Solitary states in adaptive nonlocal oscillator networks
,”
Eur. Phys. J. Spec. Top.
229
,
2183
2203
(
2020
).
45.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Solitary states for coupled oscillators with inertia
,”
Chaos
28
,
011103
(
2018
).
46.
H.
Wu
and
M.
Dhamala
, “
Dynamics of Kuramoto oscillators with time-delayed positive and negative couplings
,”
Phys. Rev. E
98
,
032221
(
2018
).
47.
N.
Semenova
,
A.
Zakharova
,
E.
Schöll
, and
V.
Anishchenko
, “
Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?
,”
Europhys. Lett.
112
,
40002
(
2015
).
48.
E.
Rybalova
,
N.
Semenova
,
G.
Strelkova
, and
V.
Anishchenko
, “
Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors
,”
Eur. Phys. J. Spec. Top.
226
,
1857
1866
(
2017
).
49.
N. I.
Semenova
,
E. V.
Rybalova
,
G. I.
Strelkova
, and
V. S.
Anishchenko
, “
“Coherence–incoherence” transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors
,”
Regul. Chaotic Dyn.
22
,
148
162
(
2017
).
50.
N.
Semenova
,
T.
Vadivasova
, and
V.
Anishchenko
, “
Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps
,”
Eur. Phys. J. Spec. Top.
227
,
1173
1183
(
2018
).
51.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
, “
Weak multiplexing in neural networks: Switching between chimera and solitary states
,”
Chaos
29
,
023122
(
2019
).
52.
E.
Rybalova
,
V.
Anishchenko
,
G.
Strelkova
, and
A.
Zakharova
, “
Solitary states and solitary state chimera in neural networks
,”
Chaos
29
,
071106
(
2019
).
53.
L.
Schülen
,
S.
Ghosh
,
A. D.
Kachhvah
,
A.
Zakharova
, and
S.
Jalan
, “
Delay engineered solitary states in complex networks
,”
Chaos, Solitons Fractals
128
,
290
296
(
2019
).
54.
L.
Schülen
,
D. A.
Janzen
,
E. S.
Medeiros
, and
A.
Zakharova
, “
Solitary states in multiplex neural networks: Onset and vulnerability
,”
Chaos, Solitons Fractals
145
,
110670
(
2021
).
55.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
, “
Enhancing power grid synchronization and stability through time-delayed feedback control
,”
Phys. Rev. E
100
,
062306
(
2019
).
56.
F.
Hellmann
,
P.
Schultz
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
,
J.
Kurths
, and
Y.
Maistrenko
, “
Network-induced multistability through lossy coupling and exotic solitary states
,”
Nat. Commun.
11
,
592
(
2020
).
57.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
What adaptive neuronal networks teach us about power grids
,”
Phys. Rev. E
103
,
042315
(
2021
).
58.
F. P.
Kemeth
,
S. W.
Haugland
,
L.
Schmidt
,
I. G.
Kevrekidis
, and
K.
Krischer
, “
A classification scheme for chimera states
,”
Chaos
26
,
094815
(
2016
).
59.
A.
Zakharova
,
M.
Kapeller
, and
E.
Schöll
,
Amplitude Chimeras and Chimera Death in Dynamical Networks
(
IOP Publishing
,
2016
), p. 012018.
60.
S. A.
Bogomolov
,
A. V.
Slepnev
,
G. I.
Strelkova
,
E.
Schöll
, and
V. S.
Anishchenko
, “
Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems
,”
Commun. Nonlinear Sci. Numer. Simul.
43
,
25
36
(
2017
).
61.
I. A.
Shepelev
,
A. V.
Bukh
,
G. I.
Strelkova
,
T. E.
Vadivasova
, and
V. S.
Anishchenko
, “
Chimera states in ensembles of bistable elements with regular and chaotic dynamics
,”
Nonlinear Dyn.
90
,
2317
2330
(
2017
).
62.
S.
Muni
,
Z.
Njıtacke
,
C.
Feudjio
,
T.
Fozin
, and
J.
Awrejcewicz
, “
Route to chaos and chimera states in a network of memristive Hindmarsh-Rose neurons model with external excitation
,”
Chaos Theory Appl.
4
,
119
127
(
2022
).
63.
S.
Muni
and
A.
Provata
, “
Chimera states in ring–star network of Chua circuits
,”
Nonlinear Dyn.
101
,
2509
2521
(
2020
).
64.
V.
Santos
,
M.
Sales
,
S.
Muni
,
J.
Szezech
,
A.
Batista
,
S.
Yanchuk
, and
J.
Kurths
, “Identification of single- and double-well coherence-incoherence patterns by the binary distance matrix,” arXiv:2211.11454v2.
65.
J.
Xie
,
E.
Knobloch
, and
H.-C.
Kao
, “
Multicluster and traveling chimera states in nonlocal phase-coupled oscillators
,”
Phys. Rev. E
90
,
022919
(
2014
).
66.
I.
Omelchenko
,
E.
Omel’chenko
,
P.
Hövel
, and
E.
Schöll
, “
When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states
,”
Phys. Rev. Lett.
110
,
224101
(
2013
).
67.
S.
Olmi
,
E. A.
Martens
,
S.
Thutupalli
, and
A.
Torcini
, “
Intermittent chaotic chimeras for coupled rotators
,”
Phys. Rev. E
92
,
030901
(
2015
).
68.
G.
Bordyugov
,
A.
Pikovsky
, and
M.
Rosenblum
, “
Self-emerging and turbulent chimeras in oscillator chains
,”
Phys. Rev. E
82
,
035205
(
2010
).
69.
M.
Bolotov
,
L.
Smirnov
,
G.
Osipov
, and
A.
Pikovsky
, “
Simple and complex chimera states in a nonlinearly coupled oscillatory medium
,”
Chaos
28
,
045101
(
2018
).
70.
Y.
Maistrenko
,
O.
Sudakov
,
O.
Osiv
, and
V.
Maistrenko
, “
Chimera states in three dimensions
,”
New J. Phys.
17
,
073037
(
2015
).
71.
Y.
Kuramoto
and
S.-I.
Shima
, “
Rotating spirals without phase singularity in reaction-diffusion systems
,”
Prog. Theor. Phys. Suppl.
150
,
115
125
(
2003
).
72.
S.-I.
Shima
and
Y.
Kuramoto
, “
Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators
,”
Phys. Rev. E
69
,
036213
(
2004
).
73.
A.
Bukh
and
V.
Anishchenko
, “
Spiral, target, and chimera wave structures in a two-dimensional ensemble of nonlocally coupled van der Pol oscillators
,”
Tech. Phys. Lett.
45
,
675
678
(
2019
).
74.
E.
Rybalova
,
G.
Strelkova
, and
V.
Anishchenko
, “
Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps
,”
Chaos, Solitons Fractals
115
,
300
305
(
2018
).
75.
I.
Omelchenko
,
B.
Riemenschneider
,
P.
Hövel
,
Y.
Maistrenko
, and
E.
Schöll
, “
Transition from spatial coherence to incoherence in coupled chaotic systems
,”
Phys. Rev. E
85
,
026212
(
2012
).
76.
S.
Majhi
,
T.
Kapitaniak
, and
D.
Ghosh
, “
Solitary states in multiplex networks owing to competing interactions
,”
Chaos
29
,
013108
(
2019
).
77.
M.
Wolfrum
and
E.
Omel’chenko
, “
Chimera states are chaotic transients
,”
Phys. Rev. E
84
,
015201
(
2011
).
78.
S. A.
Loos
,
J. C.
Claussen
,
E.
Schöll
, and
A.
Zakharova
, “
Chimera patterns under the impact of noise
,”
Phys. Rev. E
93
,
012209
(
2016
).
79.
E. V.
Rybalova
,
D. Y.
Klyushina
,
V. S.
Anishchenko
, and
G. I.
Strelkova
, “
Impact of noise on the amplitude chimera lifetime in an ensemble of nonlocally coupled chaotic maps
,”
Regul. Chaotic Dyn.
24
,
432
445
(
2019
).
80.
A. V.
Bukh
,
A. V.
Slepnev
,
V. S.
Anishchenko
, and
T. E.
Vadivasova
, “
Stability and noise-induced transitions in an ensemble of nonlocally coupled chaotic maps
,”
Regul. Chaotic Dyn.
23
,
325
338
(
2018
).
81.
I.
Shepelev
,
A.
Bukh
,
S.
Muni
, and
V.
Anishchenko
, “
Role of solitary states in forming spatiotemporal patterns in a 2D lattice of van der Pol oscillators
,”
Chaos, Solitons Fractals
135
,
109725
(
2020
).
82.
I.
Shepelev
,
A.
Bukh
, and
S.
Muni
, “
Quantifying the transition from spiral waves to spiral wave chimeras in a lattice of self-sustained oscillators
,”
Regul. Chaotic Dyn.
25
,
597
615
(
2020
).
83.
I.
Shepelev
,
S.
Muni
,
E.
Schöll
, and
G.
Strelkova
, “
Repulsive inter-layer coupling induces anti-phase synchronization
,”
Chaos
31
,
063116
(
2021
).
84.
I.
Shepelev
,
S.
Muni
, and
T.
Vadivasova
, “
Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling
,”
Chaos
31
,
021104
(
2021
).
85.
I.
Shepelev
,
S.
Muni
, and
T. E.
Vadivasova
, “
Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling
,”
Chaos
31
,
043136
(
2021
).
86.
A.
Cromer
, “
Stable solutions using the Euler approximation
,”
Am. J. Phys.
49
,
455
459
(
1981
).
87.
E. S.
Popova
,
N. V.
Stankevich
, and
A. P.
Kuznetsov
, “
Cascade of invariant curve doubling bifurcations and quasi-periodic Hénon attractor in the discrete Lorenz-84 model
,”
Izv. Saratov Univ. New Ser: Phys.
20
,
222
232
(
2020
).
88.
T.
Ushio
and
K.
Hirai
, “
Chaos induced by the generalized Euler method
,”
Int. J. Syst. Sci.
17
,
669
678
(
1986
).
89.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press, Oxford, UK
,
2003
), Vol. 69.
90.
V. V.
Zaytcev
, “
The discrete van der Pol oscillator: Finite differences and slow amplitudes
,”
Izv. VUZ. Appl. Nonlinear Dyn.
25
,
70
78
(
2017
).
91.
T.
Nguyen-Van
and
N.
Hori
, “
New class of discrete-time models for non-linear systems through discretisation of integration gains
,”
IET Control Theory Appl.
7
,
80
89
(
2013
).
92.
V.
Astakhov
,
A.
Shabunin
,
W.
Uhm
, and
S.
Kim
, “
Multistability formation and synchronization loss in coupled Hénon maps: Two sides of the single bifurcational mechanism
,”
Phys. Rev. E
63
,
056212
(
2001
).
93.
S. S.
Muni
,
R. I.
McLachlan
, and
D. J.
Simpson
, “Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions,” arXiv:2006.01405 (2020).
94.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
95.
V.
Afraimovich
and
L. P.
Shilnikov
, “
Invariant two-dimensional tori, their breakdown and stochasticity
,”
Am. Math. Soc. Transl.
149
,
201
212
(
1991
).
96.
T.
Endo
and
S.
Mori
, “
Mode analysis of a ring of a large number of mutually coupled van der Pol oscillators
,”
IEEE Trans. Circuits Syst.
25
,
7
18
(
1978
).
97.
G.
Ermentrout
, “
The behavior of rings of coupled oscillators
,”
J. Math. Biol.
23
,
55
74
(
1985
).
98.
E. V.
Rybalova
,
G. I.
Strelkova
,
T. E.
Vadivasova
, and
V. S.
Anishchenko
,
Bistability promotes solitary states in ensembles of nonlocally coupled maps
,”
Proc. SPIE
11067
,
110670P
(
2019
).
99.
V. D.
Santos
,
J.
Szezech
, Jr.
,
A. M.
Batista
,
K. C.
Iarosz
,
M. D. S.
Baptista
,
H. P.
Ren
,
C.
Grebogi
,
R. L.
Viana
,
I.
Caldas
, and
Y. L.
Maistrenko
, “
Riddling: Chimera’s dilemma
,”
Chaos
28
,
081105
(
2018
).
100.
V.
Dos Santos
,
F. S.
Borges
,
K. C.
Iarosz
,
I.
Caldas
,
J. D.
Szezech
,
R. L.
Viana
,
M. S.
Baptista
, and
A. M.
Batista
, “
Basin of attraction for chimera states in a network of Rössler oscillators
,”
Chaos
30
,
083115
(
2020
).
You do not currently have access to this content.