Achieving a network structure with optimal synchronization is essential in many applications. This paper proposes an optimization algorithm for constructing a network with optimal synchronization. The introduced algorithm is based on the eigenvalues of the connectivity matrix. The performance of the proposed algorithm is compared with random link addition and a method based on the eigenvector centrality. It is shown that the proposed algorithm has a better synchronization ability than the other methods and also the scale-free and small-world networks with the same number of nodes and links. The proposed algorithm can also be applied for link reduction while less disturbing its synchronization. The effectiveness of the algorithm is compared with four other link reduction methods. The results represent that the proposed algorithm is the most appropriate method for preserving synchronization.

1
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
2
A. S. D.
Mata
, “
Complex networks: A mini-review
,”
Braz. J. Phys.
50
,
658
672
(
2020
).
3
M.
Small
,
L.
Hou
, and
L.
Zhang
, “
Random complex networks
,”
Nat. Sci. Rev.
1
,
357
367
(
2014
).
4
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
,
20220043
(
2022
).
5
K.
Kovalenko
,
X.
Dai
,
K.
Alfaro-Bittner
,
A.
Raigorodskii
,
M.
Perc
, and
S.
Boccaletti
, “
Contrarians synchronize beyond the limit of pairwise interactions
,”
Phys. Rev. Lett.
127
,
258301
(
2021
).
6
M. S.
Anwar
and
D.
Ghosh
, “
Intralayer and interlayer synchronization in multiplex network with higher-order interactions
,”
Chaos
32
,
033125
(
2022
).
7
L.
da F. Costa
,
F. A.
Rodrigues
,
G.
Travieso
, and
P. R. V.
Boas
, “
Characterization of complex networks: A survey of measurements
,”
Adv. Phys.
56
,
167
242
(
2007
).
8
A.-L.
Barabási
, “
Network science
,”
Philos. Trans. R. Soc. London, Ser. A
371
,
20120375
(
2013
).
9
S.
Majhi
,
S.
Rakshit
, and
D.
Ghosh
, “
Oscillation suppression and chimera states in time-varying networks
,”
Chaos
32
,
042101
(
2022
).
10
S.
Majhi
, “
Dynamical robustness of complex networks subject to long-range connectivity
,”
Proc. R. Soc. A
478
,
20210953
(
2022
).
11
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
12
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D.
Valladares
, and
C.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
13
S. N.
Chowdhury
,
S.
Majhi
,
M.
Ozer
,
D.
Ghosh
, and
M.
Perc
, “
Synchronization to extreme events in moving agents
,”
New J. Phys.
21
,
073048
(
2019
).
14
D.
Ghosh
,
M.
Frasca
,
A.
Rizzo
,
S.
Majhi
,
S.
Rakshit
,
K.
Alfaro-Bittner
, and
S.
Boccaletti
, “
The synchronized dynamics of time-varying networks
,”
Phys. Rep.
949
,
1
63
(
2022
).
15
V.
Kohar
,
P.
Ji
,
A.
Choudhary
,
S.
Sinha
, and
J.
Kurths
, “
Synchronization in time-varying networks
,”
Phys. Rev. E
90
,
022812
(
2014
).
16
E.
Schöll
,
A.
Selivanov
,
J.
Lehnert
,
T.
Dahms
,
P.
Hövel
, and
A.
Fradkov
, “
Control of synchronization in delay-coupled networks
,”
Int. J. Mod. Phys. B
26
,
1246007
(
2012
).
17
J.
Zhuang
,
J.
Cao
,
L.
Tang
,
Y.
Xia
, and
M.
Perc
, “
Synchronization analysis for stochastic delayed multilayer network with additive couplings
,”
IEEE Trans. Syst. Man Cybern.: Syst.
50
,
4807
4816
(
2018
).
18
K.
Li
,
W.
Sun
,
M.
Small
, and
X.
Fu
, “
Practical synchronization on complex dynamical networks via optimal pinning control
,”
Phys. Rev. E
92
,
010903
(
2015
).
19
M.
Schröder
,
S.
Chakraborty
,
D.
Witthaut
,
J.
Nagler
, and
M.
Timme
, “
Interaction control to synchronize non-synchronizable networks
,”
Sci. Rep.
6
,
37142
(
2016
).
20
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
21
F. M.
Atay
,
T.
Bıyıkoğlu
, and
J.
Jost
, “
Network synchronization: Spectral versus statistical properties
,”
Physica D
224
,
35
41
(
2006
).
22
M.
Hazrati
,
S.
Panahi
,
F.
Parastesh
,
S.
Jafari
, and
D.
Ghosh
, “
Role of links on the structural properties of different network topologies
,”
Europhys. Lett.
133
,
40001
(
2021
).
23
L.
Chen
,
P.
Ji
,
D.
Waxman
,
W.
Lin
, and
J.
Kurths
, “
Effects of dynamical and structural modifications on synchronization
,”
Chaos
29
,
083131
(
2019
).
24
L.
Chen
,
C.
Qiu
,
H.
Huang
,
G.
Qi
, and
H.
Wang
, “
Facilitated synchronization of complex networks through a discontinuous coupling strategy
,”
Eur. Phys. J. B
76
,
625
635
(
2010
).
25
F.
Parastesh
,
K.
Rajagopal
,
S.
Jafari
,
M.
Perc
, and
E.
Schöll
, “
Blinking coupling enhances network synchronization
,”
Phys. Rev. E
105
,
054304
(
2022
).
26
W.
Chen
,
J.
Gao
,
Y.
Lan
, and
J.
Xiao
, “
Optimizing synchrony with a minimal coupling strength of coupled phase oscillators on complex networks based on desynchronous clustering
,”
Phys. Rev. E
105
,
044302
(
2022
).
27
S.
Rakshit
,
B. K.
Bera
,
J.
Kurths
, and
D.
Ghosh
, “
Enhancing synchrony in multiplex network due to rewiring frequency
,”
Proc. R. Soc. A
475
,
20190460
(
2019
).
28
R.
Carareto
,
F.
Orsatti
, and
J.
Piqueira
, “
Optimized network structure for full-synchronization
,”
Commun. Nonlinear Sci. Numer. Simul.
14
,
2536
2541
(
2009
).
29
L.
Li
,
J.
Xiao
,
H.
Peng
,
Y.
Yang
, and
Y.
Chen
, “
Improving synchronous ability between complex networks
,”
Nonlinear Dyn.
69
,
1105
1110
(
2012
).
30
G.
Chen
, “
Searching for best network topologies with optimal synchronizability: A brief review
,”
IEEE/CAA J. Autom. Sin.
9
,
573
577
(
2022
).
31
P. S.
Skardal
,
D.
Taylor
, and
J.
Sun
, “
Optimal synchronization of complex networks
,”
Phys. Rev. Lett.
113
,
144101
(
2014
).
32
L.
Donetti
,
P. I.
Hurtado
, and
M. A.
Munoz
, “
Entangled networks, synchronization, and optimal network topology
,”
Phys. Rev. Lett.
95
,
188701
(
2005
).
33
N.
Naseri
,
F.
Parastesh
,
F.
Ghassemi
,
S.
Jafari
,
E.
Schoell
, and
J.
Kurths
, “
Converting high dimensional complex networks to lower dimensional ones preserving synchronization features
,”
Europhys. Lett.
140
,
21001
(
2022
).
34
M.
Bellingeri
,
D.
Bevacqua
,
F.
Scotognella
,
R.
Alfieri
,
Q.
Nguyen
,
D.
Montepietra
, and
D.
Cassi
, “
Link and node removal in real social networks: A review
,”
Front. Phys.
8
,
228
(
2020
).
35
A.
Gusrialdi
, “Distributed algorithm for link removal in directed networks,” in International Conference on Complex Networks and Their Applications (Springer, 2020), pp. 509–521.
36
M.
Bellingeri
,
D.
Bevacqua
,
F.
Scotognella
,
R.
Alfieri
, and
D.
Cassi
, “
A comparative analysis of link removal strategies in real complex weighted networks
,”
Sci. Rep.
10
,
3911
(
2020
).
37
H.
Fan
,
Y.
Wang
,
K.
Yang
, and
X.
Wang
, “
Enhancing network synchronizability by strengthening a single node
,”
Phys. Rev. E
99
,
042305
(
2019
).
You do not currently have access to this content.