In this paper, the main subharmonic resonance of the Mathieu–Duffing system with a quintic oscillator under simple harmonic excitation, the route to chaos, and the bifurcation of the system under the influence of different parameters is studied. The amplitude-frequency and phase-frequency response equations of the main resonance of the system are determined by the harmonic balance method. The amplitude-frequency and phase-frequency response equations of the steady solution to the system under the combined action of parametric excitation and forced excitation are obtained by using the average method, and the stability conditions of the steady solution are obtained based on Lyapunov's first method. The necessary conditions for heteroclinic orbit cross section intersection and chaos of the system are given by the Melnikov method. Based on the separation of fast and slow variables, the bifurcation phenomena of the system under different conditions are obtained. The amplitude-frequency characteristics of the total response of the system under different excitation frequencies are investigated by analytical and numerical methods, respectively, which shows that the two methods achieve consistency in the trend. The influence of fractional order and fractional derivative term coefficient on the amplitude-frequency response of the main resonance of the system is analyzed. The effects of nonlinear stiffness coefficient, parametric excitation term coefficient, and fractional order on the amplitude-frequency response of subharmonic resonance are discussed. Through analysis, it is found that the existence of parametric excitation will cause the subharmonic resonance of the Mathieu–Duffing oscillator to jump. Finally, the subcritical and supercritical fork bifurcations of the system caused by different parameter changes are studied. Through analysis, it is known that the parametric excitation coefficient causes subcritical fork bifurcations and fractional order causes supercritical fork bifurcations.

1.
M.
Azimi
, “
Parametric frequency analysis of Mathieu–Duffing equation
,”
Int. J. Bifurc. Chaos
31
(
12
),
2150181
(
2021
).
2.
X.
Ma
,
X.
Zhang
,
Y.
Yu
 et al., “
Compound bursting behaviors in the parametrically amplified Mathieu–Duffing nonlinear system
,”
J. Vib. Eng. Technol.
10
(
1
),
95
110
(
2022
).
3.
X.
Zhang
,
L.
Chen
,
F.
Zhao
 et al., “
Bursting dynamics triggered by the pulse-shaped explosion phenomenon in a parametrically and externally driven Van der Pol–Mathieu system
,”
Eur. Phys. J. Plus
137
(
5
),
1
12
(
2022
).
4.
M.
Wei
,
X.
Han
, and
Q.
Bi
, “
Sufficient conditions and criteria for the pulse-shaped explosion related to equilibria in a class of nonlinear systems
,”
Chaos Solitons Fract.
165
,
112749
(
2022
).
5.
E.
Loghman
,
A.
Kamali
,
F.
Bakhtiari-Nejad
 et al., “
On the combined shooting-pseudo-arclength method for finding frequency response of nonlinear fractional-order differential equations
,”
J. Sound Vib.
516
,
116521
(
2022
).
6.
X.
Ma
,
J.
Song
,
M.
Wei
 et al., “
Complex bursting patterns in a Van der Pol–Mathieu–Duffing oscillator
,”
Int. J. Bifurc. Chaos
31
(
06
),
2150082
(
2021
).
7.
Q. B.
Wang
,
Y. J.
Yang
, and
X.
Zhang
, “
Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise
,”
Chaos Solitons Fract.
137
,
109832
(
2020
).
8.
M.
Belhaq
,
Z.
Ghouli
, and
M.
Hamdi
, “
Energy harvesting in a Mathieu–Van der Pol–Duffing MEMS device using time delay
,”
Nonlinear Dyn.
94
(
4
),
2537
2546
(
2018
).
9.
Z.-C.
Xing
,
W.
Xu
,
H.-W.
Rong
 et al., “
Response to bounded noise excitation of stochastic Mathieu-Duffing system with time delay state feedback
,”
Acta Phys. Sin.
58
(
2
),
824
829
(
2009
).
10.
L.
Bin
,
Z.
Hong-Xu
, and
H.
Dong-Xiao
, “
Bifurcation and chaos of some relative rotation system with triple-well Mathieu-Duffing oscillator
,”
Acta Phys. Sin.
63
(
17
),
174502
174134
(
2014
).
11.
R. S.
Zounes
and
R. H.
Rand
, “
Subharmonic resonance in the non-linear Mathieu equation
,”
Int. J. Nonlinear Mech.
37
(
1
),
43
73
(
2002
).
12.
M.
Hu
,
Y.
Li
,
S.
Li
 et al., “
Lithium-ion battery modeling and parameter identification based on fractional theory
,”
Energy
165
,
153
163
(
2018
).
13.
F. M.
Zaihidee
,
S.
Mekhilef
, and
M.
Mubin
, “
Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor
,”
IEEE Access
7
,
101765
101774
(
2019
).
14.
Q.
Wang
,
J.
Ma
,
S.
Yu
 et al., “
Noise detection and image denoising based on fractional calculus
,”
Chaos Solitons Fract.
131
,
109463
(
2020
).
15.
C. A.
Valentim
, Jr.
,
N. A.
Oliveira
,
J. A.
Rabi
 et al., “
Can fractional calculus help improve tumor growth models?
,”
J. Comput. Appl. Math.
379
,
112964
(
2020
).
16.
T.
Abdeljawad
,
S.
Banerjee
, and
G.-C.
Wu
, “
Discrete tempered fractional calculus for new chaotic systems with short memory and image encryption
,”
Optik
218
,
163698
(
2020
).
17.
A. P.
Singh
,
D.
Deb
,
H.
Agrawal
 et al., “
Modeling and control of robotic manipulators: A fractional calculus point of view
,”
Arab. J. Sci. Eng.
46
(
10
),
9541
9552
(
2021
).
18.
J. T.
Machado
and
A. M.
Lopes
, “
Artistic painting: A fractional calculus perspective
,”
Appl. Math. Model.
65
,
614
626
(
2019
).
19.
A.
Saadia
and
A.
Rashdi
, “
Incorporating fractional calculus in echo-cardiographic image denoising
,”
Comput. Electr. Eng.
67
,
134
144
(
2018
).
20.
A.
Nandal
,
H.
Gamboa-Rosales
,
A.
Dhaka
 et al., “
Image edge detection using fractional calculus with feature and contrast enhancement
,”
Circ. Syst. Signal Process.
37
(
9
),
3946
3972
(
2018
).
21.
J.
Xie
,
F.
Zhao
,
D.
He
 et al., “
Bifurcation and resonance of fractional cubic nonlinear system
,”
Chaos Solitons Fract.
158
,
112053
(
2022
).
22.
J. T.
Machado
and
A. M.
Galhano
, “
A fractional calculus perspective of distributed propeller design
,”
Commun. Nonlinear Sci. Numer. Simul.
55
,
174
182
(
2018
).
23.
Z.
Ren
,
J.
Yang
,
J.
Xie
 et al., “
Bifurcation and stability analysis of fractional quintic oscillator system with power damping term
,”
Int. J. Nonlinear Mech.
148
,
104260
(
2023
).
24.
Z.
Anjum
and
Y.
Guo
, “
Finite time fractional-order adaptive backstepping fault tolerant control of robotic manipulator
,”
Int. J. Control Autom. Syst.
19
(
1
),
301
310
(
2021
).
25.
A.
Jajarmi
and
D.
Baleanu
, “
A new fractional analysis on the interaction of HIV with CD4+ T-cells
,”
Chaos Solitons Fract.
113
,
221
229
(
2018
).
26.
B.
Guo
,
Z.
Zhuang
,
J.-S.
Pan
 et al., “
Optimal design and simulation for PID controller using fractional-order fish migration optimization algorithm
,”
IEEE Access
9
,
8808
8819
(
2021
).
27.
E. M.
Waxman
,
K. C.
Cossel
,
G.-W.
Truong
 et al., “
Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers
,”
Atmos. Meas. Tech.
10
(
9
),
3295
3311
(
2017
).
28.
J.
Ma
,
K. H.
Martin
,
P. A.
Dayton
 et al., “
A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
61
(
5
),
870
880
(
2014
).
29.
E.
Lins
,
S.
Read
,
B.
Unni
 et al., “
Microsecond resolved infrared spectroelectrochemistry using dual frequency comb IR lasers
,”
Anal. Chem.
92
(
9
),
6241
6244
(
2020
).
30.
C.
Wang
,
B.
Perkins
,
Z.
Wang
 et al., “
Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS
,”
IEEE Trans. Biomed. Circ. Syst.
12
(
3
),
709
721
(
2018
).
31.
C. E.
Munding
,
E.
Chérin
,
I.
Jourard
 et al., “
Development of a 3 French dual-frequency intravascular ultrasound catheter
,”
Ultrasound Med. Biol.
44
(
1
),
251
266
(
2018
).
32.
D. S.
Kwon
,
S.-T.
Khang
,
T.-D.
Yeo
 et al., “
Dual-band half-elliptic hoof antenna with Mathieu function for a femto-cell network
,”
IEEE Trans. Antenna Propag.
65
(
3
),
1047
1054
(
2017
).
33.
X.
Zhao
,
H.
Shen
,
G.
Bai
 et al., “
High brightness, high SNR radio-frequency signal generated by an all-fibered linear-polarization single-mode dual-frequency fiber laser
,”
Opt. Express
25
(
22
),
27051
27059
(
2017
).
34.
M. M.
Mahmud
,
X.
Wu
,
L.
Sanders J
 et al., “
An improved CMUT structure enabling release and collapse of the plate in the same Tx/Rx cycle for dual-frequency acoustic angiography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
(
11
),
2291
2302
(
2020
).
35.
J.
Niu
,
W.
Zhang
,
S.
Wen
 et al., “
Subharmonic resonance of Duffing oscillator with dry friction under foundation excitation
,”
J. Comput. Nonlinear Dyn.
17
(
10
),
101006
(
2022
).
36.
J.
Tang
and
C.
Yin
, “
Dynamic response of Mathieu–Duffing oscillator with Caputo derivative
,”
Int. J. Nonlinear Sci. Num.
1–21 (
2021
).
37.
Y.
Shen
,
H.
Li
,
S.
Yang
 et al., “
Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
,”
Nonlinear Dyn.
102
(
3
),
1485
1497
(
2020
).
38.
D.
Park
,
J.
Park
,
M.
Kim
 et al., “
Influence of initial phase on subharmonic resonance in an incompressible boundary layer
,”
Phys. Fluids
33
(
4
),
044101
(
2021
).
39.
J.
Zhu
,
S.
Zhang
,
G.
Wang
 et al., “
Research on vehicle stability region under critical driving situations with static bifurcation theory
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
235
(
8
),
2072
2085
(
2021
).
40.
J.
Xie
,
H.
Wang
,
L.
Chen
 et al., “
Dynamical analysis of fractional oscillator system with cosine excitation utilizing the average method
,”
Math. Methods Appl. Sci.
45
(
16
),
10099
10115
(
2022
).
41.
Y.
Wang
,
J.
Cao
, and
C.
Huang
, “
Exploration of bifurcation for a fractional-order BAM neural network with n+2 neurons and mixed time delays
,”
Chaos Solitons Fract.
159
,
112117
(
2022
).
42.
X.
Chen
and
H.-H.
Dai
, “
Stiffness distribution of a spherical gel structure and bifurcation analysis with application to stem-cell differentiation
,”
Int. J. Nonlinear Mech.
129
,
103640
(
2021
).
43.
W.
Shuai
,
L.
Yong
, and
Y.
Xue
, “
Synchronization, symmetry and rotating periodic solutions in oscillators with Huygens’ coupling
,”
Phys. D
434
,
133208
(
2022
).
44.
J.
Zhao
,
H.
Zhang
,
J.
Chen
 et al., “
Influence of coil current and oil film thickness on Hopf bifurcation of MLDSB
,”
Energies
15
(
3
),
848
(
2022
).
45.
J.
Yang
,
X.
Hou
,
X.
Li
 et al., “
A parameter space method for analyzing Hopf bifurcation of fractional-order nonlinear systems with multiple-parameter
,”
Chaos Solitons Fract.
155
,
111714
(
2022
).
46.
J.
Čermák
and
L.
Nechvátal
, “
Stability and chaos in the fractional Chen system
,”
Chaos Solitons Fract.
125
,
24
33
(
2019
).
47.
J.
Niu
,
H.
Gutierrez
, and
B.
Ren
, “
Resonance analysis of fractional-order Mathieu oscillator
,”
J. Comput. Nonlinear Dyn.
13
(
5
),
051003
(
2018
).
You do not currently have access to this content.