In this paper, the complex routes to chaos in a memristor-based Shinriki circuit are discussed semi-analytically via the discrete implicit mapping method. The bifurcation trees of period-m (m = 1, 2, 4 and 3, 6) motions with varying system parameters are accurately presented through discrete nodes. The corresponding critical values of bifurcation points are obtained by period-double bifurcation, saddle-node bifurcation, and Neimark bifurcation, which can be determined by the global view of eigenvalues analysis. Unstable periodic orbits are compared with the stable ones obtained by numerical methods that can reveal the process of convergence. The basins of attractors are also employed to analyze the coexistence of asymmetric stable periodic motions. Furthermore, hardware experiments are designed via Field Programmable Gate Array to verify the analysis model. As expected, an evolution of periodic motions is observed in this memristor-based Shinrik's circuit and the experimental results are consistent with that of the calculations through the discrete mapping method.

1.
L. O.
Chua
, “
Memristor—The missing circuit element
,”
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
2.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristors found
,”
Nature
453
,
80
83
(
2008
).
3.
A.
Amirany
,
M. H.
Moaiyeri
, and
K.
Jafari
, “
Nonvolatile associative memory design based on spintronic synapses and CNTFET neurons
,”
IEEE Trans. Emerging Top. Comput.
10
,
428
437
(
2022
).
4.
A.
Saleem
,
F. M.
Simanjuntak
,
S.
Chandrasekaran
,
S.
Rajasekaran
,
T. Y.
Tseng
, and
T.
Prodromakis
, “
Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications
,”
Appl. Phys. Lett.
118
,
112103
(
2021
).
5.
Y.
Zhi
,
H.
Wajid
,
V. M.
Venkatasubramanian
,
W.
Ji
,
P.
Panciatici
,
F.
Xavier
, and
T.
Gilles
, “
Computational methods for nonlinear analysis of Hopf bifurcations in power system models
,”
Electr. Power Syst. Res.
212
,
108574
(
2022
).
6.
B.
Ramakrishnan
,
O. M.
Njimah
,
J.
Kengne
, and
K.
Rajagopal
, “
Dynamic analysis of a memristive diode bridge-based higher order autonomous
,”
Eur. Phys. J. Plus
137
,
787
(
2022
).
7.
C. L.
Li
,
H. D.
Li
,
W. X.
Xie
, and
J. R.
Du
, “
A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit
,”
Nonlinear Dyn.
106
,
1041
1058
(
2021
).
8.
J. J.
Ying
,
Y.
Liang
,
G. Y.
Wang
 et al., “
Action potential and chaos near the edge of chaos in memristive circuits
,”
Chaos
32
,
093101
(
2022
).
9.
G. Y.
Peng
and
F. H.
Min
, “
Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit
,”
Nonlinear Dyn.
90
,
1607
1625
(
2017
).
10.
J. C.
Sprott
and
B.
Munmuangsaen
, “
Comment on ‘A hidden chaotic attractor in the classical Lorenz system’
,”
Chaos Solitons Fractals
113
,
261
262
(
2018
).
11.
M.
Shinriki
,
M.
Yamamoto
, and
S.
Mori
, “
Multimode oscillations in a modified van der Pol oscillator containing a positive nonlinear conductance
,”
Proc. IEEE
69
,
394
395
(
1981
).
12.
E.
Freire
,
L. G.
Franquelo
, and
J.
Aracil
, “
Periodicity and chaos in an autonomous electrical system
,”
IEEE Trans. Circuit Syst.
31
,
237
247
(
1984
).
13.
J. P.
Werner
,
T.
Stemler
, and
H.
Benner
, “
Crisis and stochastic resonance in Shinriki’s circuit
,”
Physica D
237
,
859
865
(
2008
).
14.
J.
Kengne
,
Z.
Njitacke Tabekouen
,
V.
Kamdoum Tamba
, and
A.
Nguomkam Negou
, “
Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit
,”
Chaos
25
,
103126
(
2015
).
15.
J.
Ramadoss
,
J.
Kengne
,
A. N.
Kengnou Telem
, and
K.
Rajagopal
, “
Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator
,”
Physica. A
588
,
126562
(
2021
).
16.
Q. S.
Jin
,
F. H.
Min
, and
C. B.
Li
, “
Infinitely many coexisting attractors of a dual memristive Shinriki oscillator and its FPGA digital implementation
,”
Chin. J. Phys.
62
,
342
357
(
2019
).
17.
F. H.
Min
,
Y. Z.
Chen
,
L.
Lu
, and
X. Y.
Li
, “
Extreme multistability and antimonotonicity in a Shinriki oscillator with two flux-controlled memristors
,”
Int. J. Bifurcation Chaos
31
,
2150167
(
2021
).
18.
Y. Z.
Cheng
,
F. H.
Min
,
Z.
Rui
, and
Y. P.
Dou
, “
Firing multistability, symmetry, bubbles of a Shinriki oscillator with MEM-elements
,”
Chin. J. Phys.
74
,
157
174
(
2021
).
19.
C. K.
Volos
,
V. T.
Pham
,
H. E.
Nistazakis
, and
I. N.
Stouboulos
, “
A dream that has come ture: Chaos from a nonlinear circuit with a real memristor
,”
Int. J. Bifurcation Chaos
30
,
2030036
(
2020
).
20.
A. C. J.
Luo
,
Discretization and Implicit Mapping Dynamics
(
Springer
,
Berlin
,
2015
).
21.
A. C. J.
Luo
, “
Periodic flows to chaos based on discrete implicit mappings of continues nonlinear systems
,”
Int. J. Bifurcation Chaos
25
,
1550044
(
2015
).
22.
Y.
Guo
and
A. C. J.
Luo
, “
On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator
,”
Chaos, Solitons Fractals
81
,
378
399
(
2015
).
23.
A. C. J.
Luo
and
J. Z.
Huang
, “
Analytical solutions for asymmetric period motions to chaos in a hardening Duffing oscillator
,”
Nonlinear Dyn.
72
,
417
438
(
2013
).
24.
A. C. J.
Luo
and
S. Y.
Xing
, “
Bifurcation trees of period-3 motions to chaos in a time-delayed Duffing oscillator
,”
Nonlinear Dyn.
88
,
2831
2862
(
2017
).
25.
Y. Y.
Xu
and
A. C. J.
Luo
, “
Independent period-2 motions to chaos in a van der Pol-Duffing oscillator
,”
Int. J. Bifurcation Chaos
30
,
2030045
(
2020
).
26.
S.
Guo
and
A. C. J.
Luo
, “
On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system
,”
Chaos
31
,
043106
(
2021
).
27.
C.
Guo
and
A. C. J.
Luo
, “
Higher-Order complex periodic motions in a nonlinear, electromagnetically tuned mass damper system
,”
Int. J. Bifurcation Chaos
32
,
2250169
(
2022
).
28.
Y.
Guo
and
A. C. J.
Luo
, “
Period-3 motions to chaos in a periodically forced nonlinear-spring pendulum
,”
Chaos
32
,
103129
(
2022
).
You do not currently have access to this content.