We study the dynamics and bifurcations of temporal dissipative solitons in an excitable system under time-delayed feedback. As a prototypical model displaying different types of excitability, we use the Morris–Lecar model. In the limit of large delay, soliton like solutions of delay-differential equations can be treated as homoclinic solutions of an equation with an advanced argument. Based on this, we use concepts of classical homoclinic bifurcation theory to study different types of pulse solutions and to explain their dependence on the system parameters. In particular, we show how a homoclinic orbit flip of a single-pulse soliton leads to the destabilization of equidistant multi-pulse solutions and to the emergence of stable pulse packages. It turns out that this transition is induced by a heteroclinic orbit flip in the system without feedback, which is related to the excitability properties of the Morris–Lecar model.

1.
B.
Garbin
,
J.
Javaloyes
,
G.
Tissoni
, and
S.
Barland
,
Nat. Commun.
6
,
5915
(
2015
).
2.
F.
Gustave
,
L.
Columbo
,
G.
Tissoni
,
M.
Brambilla
,
F.
Prati
,
B.
Kelleher
,
B.
Tykalewicz
, and
S.
Barland
,
Phys. Rev. Lett.
115
,
043902
(
2015
).
3.
C.
Schelte
,
A.
Pimenov
,
A.
Vladimirov
,
J.
Javaloyes
, and
S.
Gurevich
,
Opt. Lett.
44
,
4925
(
2019
).
4.
S.
Terrien
,
B.
Krauskopf
, and
N. G.
Broderick
,
SIAM J. Appl. Dyn. Syst.
16
,
771
(
2017
).
5.
S.
Terrien
,
V. A.
Pammi
,
B.
Krauskopf
,
N. G. R.
Broderick
, and
S.
Barbay
,
Phys. Rev. E
103
,
012210
(
2021
).
6.
S.
Ruschel
,
B.
Krauskopf
, and
N. G. R.
Broderick
,
Chaos
30
,
093101
(
2020
).
7.
M.
Marconi
,
J.
Javaloyes
,
S.
Balle
, and
M.
Giudici
,
Phys. Rev. Lett.
112
,
223901
(
2014
).
8.
C.
Schelte
,
J.
Javaloyes
, and
S. V.
Gurevich
,
Phys. Rev. A
97
,
053820
(
2018
).
9.
A. G.
Vladimirov
and
D.
Turaev
,
Phys. Rev. A
72
,
033808
(
2005
).
10.
A. G.
Vladimirov
,
Phys. Rev. E
105
,
044207
(
2022
).
11.
M.
Nizette
,
D.
Rachinskii
,
A.
Vladimirov
, and
M.
Wolfrum
,
Physica D
218
,
95
(
2006
).
12.
L.
Munsberg
,
J.
Javaloyes
, and
S. V.
Gurevich
,
Chaos
30
,
063137
(
2020
).
13.
D.
Hessel
,
S. V.
Gurevich
, and
J.
Javaloyes
,
Opt. Lett.
46
,
2557
(
2021
).
14.
C.
Schelte
,
P.
Camelin
,
M.
Marconi
,
A.
Garnache
,
G.
Huyet
,
G.
Beaudoin
,
I.
Sagnes
,
M.
Giudici
,
J.
Javaloyes
, and
S. V.
Gurevich
,
Phys. Rev. Lett.
123
,
043902
(
2019
).
15.
G.
Giacomelli
and
A.
Politi
,
Phys. Rev. Lett.
76
,
2686
(
1996
).
16.
S.
Yanchuk
and
G.
Giacomelli
,
J. Phys. A: Math. Theor.
50
,
103001
(
2017
).
17.
M.
Lichtner
,
M.
Wolfrum
, and
S.
Yanchuk
,
SIAM J. Math. Anal.
43
,
788
(
2011
).
18.
J.
Sieber
,
M.
Wolfrum
,
M.
Lichtner
, and
S.
Yanchuk
,
Discrete Contin. Dyn. Syst.
33
,
3109
(
2013
).
19.
S.
Heiligenthal
,
T.
Dahms
,
S.
Yanchuk
,
T.
Jüngling
,
V.
Flunkert
,
I.
Kanter
,
E.
Schöll
, and
W.
Kinzel
,
Phys. Rev. Lett.
107
,
234102
(
2011
).
20.
S.
Yanchuk
,
S.
Ruschel
,
J.
Sieber
, and
M.
Wolfrum
,
Phys. Rev. Lett.
123
,
053901
(
2019
).
21.
J.
Sieber
,
K.
Engelborghs
,
T.
Luzyanina
,
G.
Samaey
, and
D.
Roose
, “DDE-BIFTOOL manual-bifurcation analysis of delay differential equations,” arXiv:1406.7144 (2014).
22.
A. J.
Homburg
and
B.
Sandstede
, in Handbook of Dynamical Systems, edited by H. Broer, B. Hasselblatt, and F. Takens (North-Holland, Elsevier Science, 2010), Vol. 3, Chap. 8, pp. 379–524.
23.
L. P.
Shilnikov
,
A. L.
Shilnikov
,
D. V.
Turaev
, and
L. O.
Chua
, in Methods of Qualitative Theory in Nonlinear Dynamics—Part II, edited by L. O. Chua (World Scientific, 2001), Vol. 5.
24.
C.
Morris
and
H.
Lecar
,
Biophys. J.
35
,
193
(
1981
).
25.
G. B.
Ermentrout
and
D. H.
Terman
, “Mathematical foundations of neuroscience,” in
Interdisciplinary Applied Mathematics
(Springer, New York, 2010).
26.
J.
Rinzel
and
G.
Ermentrout
, in Methods in Neuronal Modeling, 2nd ed. edited by C. Koch and I. Segev (MIT Press, 1998), Chap. 7, pp. 251–291.
27.
E. M.
Izhikevich
,
Int. J. Bifurc. Chaos
10
,
1171
(
2000
).
28.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
The MIT Press
,
2007
).
29.
A.
Borisyuk
and
J.
Rinzel
,
Methods and Models in Neurophysics
, 1st ed. (
Elsevier
,
2005
). 17 (2005).
30.
L.
Duan
,
D.
Zhai
, and
Q.
Lu
, “Bifurcation and bursting in Morris-Lecar model for class I and class II excitability,” in
Dynamical Systems and Differential Equations, Proceedings of the 8th AIMS International Conference, Dresden, Germany
, edited by W. Feng, Z. Feng, M. Grasselli, A. Ibragimov, X. Lu, S. Siegmund, and J. Voigt (AIMS, 2011), pp. 391–399.
31.
C.
Liu
,
X.
Liu
, and
S.
Liu
,
Biol. Cybern.
108
,
75
(
2013
).
32.
K.
Tsumoto
,
H.
Kitajima
,
T.
Yoshinaga
,
K.
Aihara
, and
H.
Kawakami
,
Neurocomputing
69
,
293
(
2006
).
33.
B.
Lindner
,
J.
García-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
,
Phys. Rep.
392
,
321
(
2004
).
34.
S.
Schecter
,
SIAM J. Math. Anal.
18
,
1142
(
1987
).
35.
S.-N.
Chow
and
X.-B.
Lin
, “Bifurcation of a homoclinic orbit with a saddle-node equilibrium,”
Differ. Integral Equ.
3
(3),
435
466
(
1990
).
36.
B.
Deng
,
SIAM J. Math. Anal.
21
,
693
(
1990
).
37.
K.
Pyragas
,
Phys. Lett. A
170
,
421
(
1992
).
38.
S.
Yanchuk
,
M.
Wolfrum
,
T.
Pereira
, and
D.
Turaev
,
J. Differ. Equ.
318
,
323
(
2022
).
39.
S.
Yanchuk
and
P.
Perlikowski
,
Phys. Rev. E
79
,
046221
(
2009
).
40.
A.
Giraldo
and
S.
Ruschel
, “Pulse-adding of temporal dissipative solitons: Resonant homoclinic points and the orbit flip of case B with delay,” arXiv:2207.13547 (2022).
41.
V. V.
Bykov
,
Physica D
62
,
290
299
(
1993
).
42.
J.
Knobloch
,
J. S.
Lamb
, and
K. N.
Webster
,
J. Differ. Equ.
257
,
2984
(
2014
).
43.
G.
Samaey
,
K.
Engelborghs
, and
D.
Roose
,
Numer. Algorithms
30
,
335
(
2002
).
44.
W.-J.
Beyn
,
IMA J. Numer. Anal.
10
,
379
(
1990
).
45.
B.
Sandstede
, WIAS Report No. 7, 1993. .
46.
K.
Kirchgässner
,
Adv. Appl. Mech.
26
,
135
(
1988
).
47.
J.
Burke
and
E.
Knobloch
,
Chaos
17
,
037102
(
2007
).
48.
B. A.
Malomed
, in Large Scale Structures in Nonlinear Physics, edited by J.-D. Fournier and P.-L. Sulem (Springer, Berlin, 1991), pp. 288–294.
49.
H.
Sakaguchi
,
D. V.
Skryabin
, and
B. A.
Malomed
,
Opt. Lett.
43
,
2688
(
2018
).
50.
D.
Turaev
,
A. G.
Vladimirov
, and
S.
Zelik
,
Phys. Rev. Lett.
108
,
263906
(
2012
).
You do not currently have access to this content.