The energy landscape theory has widely been applied to study the stochastic dynamics of biological systems. Different methods have been developed to quantify the energy landscape for gene networks, e.g., using Gaussian approximation (GA) approach to calculate the landscape by solving the diffusion equation approximately from the first two moments. However, how high-order moments influence the landscape construction remains to be elucidated. Also, multistability exists extensively in biological networks. So, how to quantify the landscape for a multistable dynamical system accurately, is a paramount problem. In this work, we prove that the weighted summation from GA (WSGA), provides an effective way to calculate the landscape for multistable systems and limit cycle systems. Meanwhile, we proposed an extended Gaussian approximation (EGA) approach by considering the effects of the third moments, which provides a more accurate way to obtain probability distribution and corresponding landscape. By applying our generalized EGA approach to two specific biological systems: multistable genetic circuit and synthetic oscillatory network, we compared EGA with WSGA by calculating the KL divergence of the probability distribution between these two approaches and simulations, which demonstrated that the EGA provides a more accurate approach to calculate the energy landscape.

1.
J. J.
Tyson
,
K. C.
Chen
, and
B.
Novak
, “
Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell
,”
Curr. Opin. Cell Biol.
15
,
221
231
(
2003
).
2.
C.
Gérard
and
A.
Goldbeter
, “
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
21643
21648
(
2009
).
3.
X.-P.
Zhang
,
F.
Liu
, and
W.
Wang
, “
Two-phase dynamics of p53 in the DNA damage response
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
8990
8995
(
2011
).
4.
P.
Ao
, “
Potential in stochastic differential equations: Novel construction
,”
J. Phys. A: Math. Gen.
37
,
L25
(
2004
).
5.
R.
Losick
and
C.
Desplan
, “
Stochasticity and cell fate
,”
Science
320
,
65
68
(
2008
).
6.
M.
Kaern
,
T. C.
Elston
,
W. J.
Blake
, and
J. J.
Collins
, “
Stochasticity in gene expression: From theories to phenotypes
,”
Nat. Rev. Genet.
6
,
451
464
(
2005
).
7.
C. H.
Waddington
,
The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology
(
Allen and Unwin, London
,
1957
).
8.
J.
Wang
,
K.
Zhang
,
L.
Xu
, and
E. K.
Wang
, “
Quantifying the Waddington landscape and biological paths for development and differentiation
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
8257
8262
(
2011
).
9.
C.
Lv
,
X.
Li
,
F.
Li
, and
T.
Li
, “
Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process
,”
PLoS Comput. Biol.
11
,
e1004156
(
2015
).
10.
H.
Ge
and
H.
Qian
, “
Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory
,”
Phys. Rev. E
94
,
052150
(
2016
).
11.
C.
Li
and
J.
Wang
, “
Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle
,”
Proc. Natl. Acad. Sci. U.S.A.
111
,
14130
14135
(
2014
).
12.
Y.
Li
,
Y.
Jiang
,
J.
Paxman
,
R.
O’Laughlin
,
S.
Klepin
,
Y.
Zhu
,
L.
Pillus
,
L. S.
Tsimring
,
J.
Hasty
, and
N.
Hao
, “
A programmable fate decision landscape underlies single-cell aging in yeast
,”
Science
369
,
325
329
(
2020
).
13.
N.
Moris
,
C.
Pina
, and
A. M.
Arias
, “
Transition states and cell fate decisions in epigenetic landscapes
,”
Nat. Rev. Genet.
17
,
693
703
(
2016
).
14.
F.
Wu
,
R.-Q.
Su
,
Y.-C.
Lai
, and
X.
Wang
, “
Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination
,”
eLife
6
,
e23702
(
2017
).
15.
N.
Shakiba
,
C.
Li
,
J.
Garcia-Ojalvo
,
K.-H.
Cho
,
K.
Patil
,
A.
Walczak
,
Y.-Y.
Liu
,
S.
Kuehn
,
Q.
Nie
,
A.
Klein
, and
G.
Deco
, “
How can Waddington-like landscapes facilitate insights beyond developmental biology?
,”
Cell Syst.
13
,
4
9
(
2022
).
16.
X.
Kang
,
J.
Wang
, and
C.
Li
, “
Exposing the underlying relationship of cancer metastasis to metabolism and epithelial-mesenchymal transitions
,”
iScience
21
,
754
772
(
2019
).
17.
A. D.
Fokker
, “
Die mittlere energie rotierender elektrischer dipole im strahlungsfeld
,”
Ann. Phys.
348
,
810
820
(
1914
).
18.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
, 3rd ed. (
North Holland
,
Amsterdam
,
2007
).
19.
H.
Yan
,
L.
Zhao
,
L.
Hu
,
X.
Wang
,
E.
Wang
, and
J.
Wang
, “
Nonequilibrium landscape theory of neural networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
E4185
E4194
(
2013
).
20.
J.
Guo
,
F.
Lin
,
X.
Zhang
,
V.
Tanavde
, and
J.
Zheng
, “
Netland: Quantitative modeling and visualization of Waddington’s epigenetic landscape using probabilistic potential
,”
Bioinformatics
33
,
1583
1585
(
2017
).
21.
J.
Shi
,
K.
Aihara
,
T.
Li
, and
L.
Chen
, “
Energy landscape decomposition for cell differentiation with proliferation effect
,”
Natl. Sci. Rev.
9
,
nwac116
(
2022
).
22.
G.
Hu
, “Stochastic forces and nonlinear systems,” edited by B. Hao (Shanghai Scientific and Technological Education Press, Shanghai, 1994).
23.
C.
Li
and
J.
Wang
, “
Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: Landscape and biological paths
,”
PLoS Comput. Biol.
9
,
e1003165
(
2013
).
24.
J.
Lang
,
Q.
Nie
, and
C.
Li
, “
Landscape and kinetic path quantify critical transitions in epithelial-mesenchymal transition
,”
Biophys. J.
120
,
4484
4500
(
2021
).
25.
J.
Wang
,
L.
Xu
,
E.
Wang
, and
S.
Huang
, “
The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation
,”
Biophys. J.
99
,
29
39
(
2010
).
26.
M.
Elowitz
and
S.
Leibler
, “
A synthetic oscillatory network of transcriptional regulators
,”
Nature
403
,
335
338
(
2000
).
27.
G.
Hu
, “
The initial value problem of birth-death master equations
,”
Phys. Lett. A
110
,
253
256
(
1985
).
28.
M.
Suzuki
, “
Scaling theory of non-equilibrium systems near the instability point. II: Anomalous fluctuation theorems in the extensive region
,”
Prog. Theor. Phys.
56
,
477
493
(
1976
).
29.
R.
Landauer
, “
Fluctuations in bistable tunnel diode circuits
,”
J. Appl. Phys.
33
,
2209
2216
(
1962
).
30.
J.
Langer
, “
Statistical theory of the decay of metastable states
,”
Ann. Phys.
54
,
258
275
(
1969
).
31.
L.
Ye
,
Z.
Song
, and
C.
Li
, “
Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision
,”
J. Chem. Phys.
154
,
025101
(
2021
).

Supplementary Material

You do not currently have access to this content.