We investigated the influence of the construction of cascade dams and reservoirs on the predictability and complexity of the streamflow of the São Francisco River, Brazil, by using complexity entropy causality plane (CECP) in its standard and weighted form. We analyzed daily streamflow time series recorded in three fluviometric stations: São Francisco (upstream of cascade dams), Juazeiro (downstream of Sobradinho dam), and Pão de Açúcar station (downstream of Sobradinho and Xingó dams). By comparing the values of CECP information quantifiers (permutation entropy and statistical complexity) for the periods before and after the construction of Sobradinho (1979) and Xingó (1994) dams, we found that the reservoirs’ operations changed the temporal variability of streamflow series toward the less predictable regime as indicated by higher entropy (lower complexity) values. Weighted CECP provides some finer details in the predictability of streamflow due to the inclusion of amplitude information in the probability distribution of ordinal patterns. The time evolution of streamflow predictability was analyzed by applying CECP in 2 year sliding windows that revealed the influence of the Paulo Alfonso complex (located between Sobradinho and Xingó dams), construction of which started in the 1950s and was identified through the increased streamflow entropy in the downstream Pão de Açúcar station. The other streamflow alteration unrelated to the construction of the two largest dams was identified in the upstream unimpacted São Francisco station, as an increase in the entropy around 1960s, indicating that some natural factors could also play a role in the decreased predictability of streamflow dynamics.

1.
Z. W.
Kundzewicz
, “
Water resources for sustainable development
,”
Hydrol. Sci. J.
42
,
467
480
(
1997
).
2.
M. A.
Palmer
,
C. A.
Reidy Liermann
,
C.
Nilsson
,
M.
Flörke
,
J.
Alcamo
,
P. S.
Lake
 et al, “
Climate change and the world’s river basins: Anticipating management options
,”
Front. Ecol. Environ.
6
,
81
89
(
2008
).
3.
D.
Sahagian
, “
Global physical effects of anthropogenic hydrological alterations: Sea level and water redistribution
,”
Global Planet Change
25
,
39
48
(
2000
).
4.
F. J.
Magilligan
and
K. H.
Nislow
, “
Changes in hydrologic regime by dams
,”
Geomorphology
71
,
61
78
(
2005
).
5.
N. L.
Poff
,
J. D.
Olden
,
D. M.
Merritt
, and
D. M.
Pepin
, “
Homogenization of regional river dynamics by dams and global biodiversity implications
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
5732
5737
(
2007
).
6.
B. D.
Richter
and
G. A.
Thomas
, “
Restoring environmental flows by modifying dam operations
,”
Ecol. Soc.
12
,
12
(
2007
).
7.
R. J.
Watts
,
B. D.
Richter
,
J. J.
Opperman
, and
K. H.
Bowmer
, “
Dam reoperation in an era of climate change
,”
Mar. Freshw. Res.
62
,
321
(
2011
).
8.
E.
Morán-Tejeda
,
J.
Lorenzo-Lacruz
,
J. I.
López-Moreno
,
A.
Ceballos-Barbancho
,
J.
Zabalza
, and
S. M.
Vicente-Serrano
, “
Reservoir management in the Duero basin (Spain): Impact on river regimes and the response to environmental change
,”
Water Resour. Manag.
26
,
2125
2146
(
2012
).
9.
Q.
Zhang
,
X.
Gu
,
V. P.
Singh
, and
M.
Xiao
, “
Flood frequency analysis with consideration of hydrological alterations: Changing properties, causes and implications
,”
J. Hydrol.
519
,
803
813
(
2014
).
10.
B. D.
Richter
,
J. V.
Baumgartner
,
J.
Powell
, and
D. P.
Braun
, “
A method for assessing hydrologic alteration within ecosystems
,”
Conserv. Biol.
10
,
1163
1174
(
1996
).
11.
Y.
Gao
,
R. M.
Vogel
,
C. N.
Kroll
,
N. L.
Poff
, and
J. D.
Olden
, “
Development of representative indicators of hydrologic alteration
,”
J. Hydrol.
374
,
136
147
(
2009
).
12.
D.
Pumo
,
A.
Francipane
,
M.
Cannarozzo
,
C.
Antinoro
, and
L. V.
Noto
, “
Monthly hydrological indicators to assess possible alterations on rivers’ flow regime
,”
Water Resour. Manag.
32
,
3687
3706
(
2018
).
13.
B.
Sivakumar
, “
Characteristics of hydrologic systems
,” in
Chaos Hydrology
(
Springer
,
Dordrecht
,
2017
), pp.
29
62
.
14.
A.
Porporato
and
L.
Ridolfi
, “
Clues to the existence of deterministic chaos in river flow
,”
Int. J. Mod. Phys. B
10
,
1821
1862
(
1996
).
15.
B.
Sivakumar
, “
Chaos theory in hydrology: Important issues and interpretations
,”
J. Hydrol.
227
,
1
20
(
2000
).
16.
C. R. C.
Rego
,
H. O.
Frota
, and
M. S.
Gusmão
, “
Multifractality of Brazilian rivers
,”
J. Hydrol.
495
,
208
215
(
2013
).
17.
A.
Sankaran
,
S. R.
Chavan
,
M.
Ali
,
A. D.
Sindhu
,
D. S.
Dharan
, and
M. I.
Khan
, “
Spatiotemporal variability of multifractal properties of fineresolution daily gridded rainfall fields over India
,”
Nat. Hazards
106
,
1951
1979
(
2021
).
18.
W.
Ma
,
Y.
Kang
, and
S.
Song
, “
Analysis of streamflow complexity based on entropies in the Weihe river basin, China
,”
Entropy
22
,
38
(
2019
).
19.
A. d.
Silva
,
I. D. d.
Barreto
,
M.
Cunha-Filho
,
R. S. C.
Menezes
,
B.
Stosic
, and
T.
Stosic
, “
Multiscale complexity analysis of rainfall in northeast Brazil
,”
Water
13
,
3213
(
2021
).
20.
C.-M.
Chou
, “
Complexity analysis of rainfall and runoff time series based on sample entropy in different temporal scales
,”
Stoch. Environ. Res. Risk Assess.
28
,
1401
1408
(
2014
).
21.
K.
Fang
,
B.
Sivakumar
, and
F. M.
Woldemeskel
, “
Complex networks, community structure, and catchment classification in a large-scale river basin
,”
J. Hydrol.
545
,
478
493
(
2017
).
22.
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
, “
Complex networks reveal global pattern of extreme-rainfall teleconnections
,”
Nature
566
,
373
377
(
2019
).
23.
Q.
Zhang
,
Y.
Zhou
,
V. P.
Singh
, and
X.
Chen
, “
The influence of dam and lakes on the Yangtze river streamflow: Long-range correlation and complexity analyses
,”
Hydrol. Process.
26
,
436
444
(
2012
).
24.
D.
Stratimirovic
,
I.
Batas-Bjelic
,
V.
Djurdjevic
, and
S.
Blesic
, “
Changes in long-term properties and natural cycles of the Danube river level and flow induced by damming
,”
Physica A
566
,
125607
(
2021
).
25.
T.
Jovanovic
,
S.
García
,
H.
Gall
, and
A.
Mejía
, “
Complexity as a streamflow metric of hydrologic alteration
,”
Stoch. Environ. Res. Risk Assess.
31
,
2107
2119
(
2017
).
26.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
27.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
28.
X.
Yang
, “
Construction and application of integrated entropy model for measuring precipitation complexity
,”
Earth Sci. Inf.
15
,
1597
1606
(
2022
).
29.
L.
Zhang
,
H.
Li
,
D.
Liu
,
Q.
Fu
,
M.
Li
,
M. A.
Faiz
 et al, “
Identification and application of the most suitable entropy model for precipitation complexity measurement
,”
Atmos. Res.
221
,
88
97
(
2019
).
30.
L.
Du
,
X.
Li
,
M.
Yang
,
B.
Sivakumar
,
Y.
Zhu
,
X.
Pan
 et al, “
Assessment of spatiotemporal variability of precipitation using entropy indexes: A case study of Beijing, China
,”
Stoch. Environ. Res. Risk Assess.
36
,
939
953
(
2022
).
31.
A. S. A.
Silva
,
R. S. C.
Menezes
,
O. A.
Rosso
,
B.
Stosic
, and
T.
Stosic
, “
Complexity entropy-analysis of monthly rainfall time series in northeastern Brazil
,”
Chaos Solitons Fractals
143
,
110623
(
2021
).
32.
S.
Shen
,
C.
Song
,
C.
Cheng
, and
S.
Ye
, “
The coupling impact of climate change on streamflow complexity in the headwater area of the northeastern Tibetan plateau across multiple timescales
,”
J. Hydrol.
588
,
124996
(
2020
).
33.
H.
Lange
,
O. A.
Rosso
, and
M.
Hauhs
, “
Ordinal pattern and statistical complexity analysis of daily stream flow time series
,”
Eur. Phys. J. Spec. Top.
222
,
535
552
(
2013
).
34.
F.
Serinaldi
,
L.
Zunino
, and
O. A.
Rosso
, “
Complexity–entropy analysis of daily stream flow time series in the continental United States
,”
Stoch. Environ. Res. Risk Assess.
28
,
1685
1708
(
2014
).
35.
J.
Fan
,
Q.
Huang
,
J.
Chang
,
D.
Sun
, and
S.
Cui
, “
Detecting abrupt change of streamflow at Lintong Station of Wei river
,”
Math. Probl. Eng.
2013
,
976591
(
2013
).
36.
T.
Stosic
,
B.
Stosic
, and
V. P.
Singh
, “
Optimizing streamflow monitoring networks using joint permutation entropy
,”
J. Hydrol.
552
,
306
312
(
2017
).
37.
T.
Stosic
,
L.
Telesca
,
D. V.
de Souza Ferreira
, and
B.
Stosic
, “
Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: A case study
,”
J. Hydrol.
540
,
1136
1145
(
2016
).
38.
V.
Nguyen-Tien
,
R. J. R.
Elliott
, and
E. A.
Strobl
, “
Hydropower generation, flood control and dam cascades: A national assessment for Vietnam
,”
J. Hydrol.
560
,
109
126
(
2018
).
39.
K.
Timpe
and
D.
Kaplan
, “
The changing hydrology of a dammed Amazon
,”
Sci. Adv.
3
,
e1700611
(
2017
).
40.
Agência Nacional de Águas
(
National Water Agency
,
2018
).
41.
B. G.
Bezerra
,
L. L.
Silva
,
C. M.
Santos e Silva
, and
G. G.
de Carvalho
, “
Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012
,”
Theor. Appl. Climatol.
135
,
565
576
(
2019
).
42.
CHESF—Companhia Hidro Elétrica do São Francisco
(
São Francisco’s Hydroelectric Company
,
2022
).
43.
M.
Riedl
,
A.
Müller
, and
N.
Wessel
, “
Practical considerations of permutation entropy
,”
Eur. Phys. J. Spec. Top.
222
,
249
262
(
2013
).
44.
B.
Fadlallah
,
B.
Chen
,
A.
Keil
, and
J.
Príncipe
, “
Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information
,”
Phys. Rev. E
87
(
2
),
022911
(
2013
).
45.
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
46.
M.
Zanin
and
F.
Olivares
, “
Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
,”
Commun. Phys.
4
,
190
(
2021
).
47.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency
,”
Physica A
389
,
1891
1901
(
2010
).
48.
F. H. A.
de Araujo
,
L.
Bejan
,
B.
Stosic
, and
T.
Stosic
, “
An analysis of Brazilian agricultural commodities using permutation—Information theory quantifiers: The influence of food crisis
,”
Chaos Solitons Fractals
139
,
110081
(
2020
).
49.
D. M.
Mateos
,
J.
Gómez-Ramírez
, and
O. A.
Rosso
, “
Using time causal quantifiers to characterize sleep stages
,”
Chaos Solitons Fractals
146
,
110798
(
2021
).
50.
K. N.
Aronis
,
R. D.
Berger
,
H.
Calkins
,
J.
Chrispin
,
J. E.
Marine
,
D. D.
Spragg
 et al, “
Is human atrial fibrillation stochastic or deterministic?—Insights from missing ordinal patterns and causal entropy-complexity plane analysis
,”
Chaos Interdiscip. J. Nonlinear Sci.
28
,
063130
(
2018
).
51.
R. A.
Miranda
,
J. A.
Valdivia
,
A. C.-L.
Chian
, and
P. R.
Muñoz
, “
Complexity of magnetic-field turbulence at reconnection exhausts in the solar wind at 1 au
,”
Astrophys. J.
923
,
132
(
2021
).
52.
M. C.
Soriano
,
L.
Zunino
,
O. A.
Rosso
,
I.
Fischer
, and
C. R.
Mirasso
, “
Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis
,”
IEEE J. Quantum Electron.
47
,
252
261
(
2011
).
53.
F. R.
Iaconis
,
A. A.
Jiménez Gandica
,
J. A.
Del Punta
,
C. A.
Delrieux
, and
G.
Gasaneo
, “
Information-theoretic characterization of eye-tracking signals with relation to cognitive tasks
,”
Chaos Interdiscip. J. Nonlinear Sci.
31
,
033107
(
2021
).
54.
S.
Siddagangaiah
,
Y.
Li
,
X.
Guo
,
X.
Chen
,
Q.
Zhang
,
K.
Yang
 et al, “
A complexity-based approach for the detection of weak signals in ocean ambient noise
,”
Entropy
18
,
101
(
2016
).
55.
J. G.
Colonna
,
J. R. H.
Carvalho
, and
O. A.
Rosso
, “
Estimating ecoacoustic activity in the Amazon rainforest through information theory quantifiers
,”
PLoS One
15
,
e0229425
(
2020
).
56.
L.
Zunino
and
H. V.
Ribeiro
, “
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
,”
Chaos Solitons Fractals
91
,
679
688
(
2016
).
57.
O. A.
Rosso
,
R.
Ospina
, and
A. C.
Frery
, “
Classification and verification of handwritten signatures with time causal information theory quantifiers
,”
PLoS One
11
,
e0166868
(
2016
).
58.
H. Y. D.
Sigaki
,
M.
Perc
, and
H. V.
Ribeiro
, “
History of art paintings through the lens of entropy and complexity
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E8585
(
2018
).
59.
Y.
Cao
,
W.
Tung
,
J. B.
Gao
,
V. A.
Protopopescu
, and
L. M.
Hively
, “
Detecting dynamical changes in time series using the permutation entropy
,”
Phys. Rev. E
70
,
046217
(
2004
).
60.
D.
Cuesta-Frau
, “
Permutation entropy: Influence of amplitude information on time series classification performance
,”
Math. Biosci. Eng.
16
,
6842
6857
(
2019
).
61.
Y.
Zhou
,
Q.
Zhang
,
K.
Li
, and
X.
Chen
, “
Hydrological effects of water reservoirs on hydrological processes in the East River (China) basin: Complexity evaluations based on the multi-scale entropy analysis
,”
Hydrol. Process.
26
,
3253
3262
(
2012
).
62.
H.
Tongal
,
M. C.
Demirel
, and
H.
Moradkhani
, “
Analysis of dam-induced cyclic patterns on river flow dynamics
,”
Hydrol. Sci. J.
62
,
626
641
(
2017
).
63.
I. D.
de Carvalho Barreto
,
T.
Stosic
,
M. C.
Filho
,
C.
Delrieux
,
V. P.
Singh
, and
B.
Stosic
, “
Complexity analyses of Sao Francisco river streamflow: Influence of dams and reservoirs
,”
J. Hydrol. Eng.
25
,
5020036
(
2020
).
64.
S.
Yue
and
C.
Wang
, “
The influence of serial correlation on the Mann–Whitney test for detecting a shift in median
,”
Adv. Water Resour.
25
,
325
333
(
2002
).
65.
S.
Chen
and
M.
Pokojovy
, “
Modern and classical k-sample omnibus tests
,”
Wiley Interdiscip. Rev. Comput. Stat.
10
,
e1418
(
2018
).
66.
S.
Lee
and
D. K.
Lee
, “
What is the proper way to apply the multiple comparison test?
,”
Korean J. Anesthesiol.
71
,
353
360
(
2018
).
67.
Y.
Huang
and
Z.
Fu
, “
Enhanced time series predictability with well-defined structures
,”
Theor. Appl. Climatol.
138
,
373
385
(
2019
).
68.
F.
Pennekamp
,
A. C.
Iles
,
J.
Garland
,
G.
Brennan
,
U.
Brose
,
U.
Gaedke
 et al, “
The intrinsic predictability of ecological time series and its potential to guide forecasting
,”
Ecol. Monogr.
89
,
e01359
(
2019
).
69.
X.
Zhou
,
X.
Huang
, and
H.
Zhao
, “
Uncertainty analysis for evaluating flow regime alteration of Jinsha River based on Indicators of Hydrologic Alteration
,”
Hydrol. Sci. J.
66
,
1808
1819
(
2021
).
You do not currently have access to this content.