The development of new approaches to suppressing cardiac arrhythmias requires a deep understanding of spiral wave dynamics. The study of spiral waves is possible in model systems, for example, in a monolayer of cardiomyocytes. A promising way to control cardiac excitability in vitro is the noninvasive photocontrol of cell excitability mediated by light-sensitive azobenzene derivatives, such as azobenzene trimethylammonium bromide (AzoTAB). The trans-isomer of AzoTAB suppresses spontaneous activity and excitation propagation speed, whereas the cis isomer has no detectable effect on the electrical properties of cardiomyocyte monolayers; cis isomerization occurs under the action of near ultraviolet (UV) light, and reverse isomerization occurs when exposed to blue light. Thus, AzoTAB makes it possible to create patterns of excitability in conductive tissue. Here, we investigate the effect of a simulated excitability gradient in cardiac cell culture on the behavior and termination of reentry waves. Experimental data indicate a displacement of the reentry wave, predominantly in the direction of lower excitability. However, both shifts in the direction of higher excitability and shift absence were also observed. To explain this effect, we reproduced these experiments in a computer model. Computer simulations showed that the explanation of the mechanism of observed drift to a lower excitability area requires not only a change in excitability coefficients (ion currents) but also a change in the diffusion coefficient; this may be the effect of the substance on intercellular connections. In addition, it was found that the drift direction depended on the observation time due to the meandering of the spiral wave. Thus, we experimentally proved the possibility of noninvasive photocontrol and termination of spiral waves with a mechanistic explanation in computer models.

1.
E. J.
Benjamin
,
P.
Muntner
,
A.
Alonso
,
M. S.
Bittencourt
,
C. W.
Callaway
,
A. P.
Carson
, and
American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee
, “
Heart disease and stroke statistics—2019 update: A report from the American heart association
,”
Circulation
139
(
10
),
e56
e528
(
2019
).
2.
A. S.
Manolis
,
A. A.
Manolis
, and
T. A.
Manolis
, “
Chronic atrial overdrive pacing to suppress recurrences of atrial fibrillation: Atrial overdrive pacing
,”
Rhythmos
16
(
4
),
82
83
(
2021
), see https://www.rhythmos.gr/index.php/Rhythmos/article/view/511.
3.
S. G.
Priori
and
ESC Scientific Document Group
, “
2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by Association for European Paediatric and Congenital Cardiology (AEPC)
,”
Eur. Heart J.
36
(
41
),
2793
2867
(
2015
).
4.
M.
Magdi
,
M.
Mubasher
,
H.
Alzaeem
, and
T.
Hamid
, “Resistant ventricular arrhythmia and the role of overdrive pacing in the suppression of the electrical storm,” Case Reports in Cardiology, 2019.
5.
N.
Magome
and
K.
Agladze
, “
Patterning and excitability control in cardiomyocyte tissue culture
,”
Physica D
239
(
16
),
1560
1566
(
2010
).
6.
N. A.
Trayanova
,
P. M.
Boyle
, and
P. P.
Nikolov
, “
Personalized imaging and modeling strategies for arrhythmia prevention and therapy
,”
Curr. Opin. Biomed. Eng.
5
,
21
28
(
2018
).
7.
V.
Waldmann
,
K.
Narayanan
,
N.
Combes
,
D.
Jost
,
X.
Jouven
, and
E.
Marijon
, “
Electrical cardiac injuries: Current concepts and management
,”
Eur. Heart J.
39
(
16
),
1459
1465
(
2018
).
8.
O.
Steinbock
and
S. C.
Müller
, “
Light-controlled anchoring of meandering spiral waves
,”
Phys. Rev. E
47
(
3
),
1506
1509
(
1993
).
9.
K.
Agladze
,
M. W.
Kay
,
V.
Krinsky
, and
N.
Sarvazyan
, “
Interaction between spiral and paced waves in cardiac tissue
,”
Am. J. Physiol.-Heart Circ. Physiol.
293
(
1
),
H503
H513
(
2007
).
10.
T.
Ikeda
,
M.
Yashima
,
T.
Uchida
,
D.
Hough
,
M. C.
Fishbein
,
W. J.
Mandel
, and
H. S.
Karagueuzian
, “
Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium: Role of the obstacle size
,”
Circ. Res.
81
(
5
),
753
764
(
1997
).
11.
H.
Tanner
,
G.
Hindricks
,
M.
Volkmer
,
S.
Furniss
,
V.
Kühlkamp
,
D.
Lacroix
, and
H.
Kottkamp
, “
Catheter ablation of recurrent scar-related ventricular tachycardia using electroanatomical mapping and irrigated ablation technology: Results of the prospective multicenter Euro-VT-study
,”
J. Cardiovasc. Electrophysiol.
21
(
1
),
47
53
(
2010
).
12.
R. D.
Anderson
,
S.
Kumar
,
J. M.
Kalman
,
P.
Sanders
,
F.
Sacher
,
M.
Hocini
, and
G.
Lee
, “
Catheter ablation of ventricular fibrillation
,”
Heart, Lung Circ.
28
(
1
),
110
122
(
2019
).
13.
L.-F.
Hsu
,
P.
Jaïs
,
P.
Sanders
,
S.
Garrigue
,
M.
Hocini
,
F.
Sacher
, and
M.
Haïssaguerre
, “
Catheter ablation for atrial fibrillation in congestive heart failure
,”
New Engl. J. Med.
351
(
23
),
2373
2383
(
2004
).
14.
M. R.
Karch
,
B.
Zrenner
,
I.
Deisenhofer
,
J.
Schreieck
,
G.
Ndrepepa
,
J.
Dong
, and
C.
Schmitt
, “
Freedom from atrial tachyarrhythmias after catheter ablation of atrial fibrillation: A randomized comparison between 2 current ablation strategies
,”
Circulation
111
(
22
),
2875
2880
(
2005
).
15.
D.
Dobrev
and
S.
Nattel
, “
New antiarrhythmic drugs for treatment of atrial fibrillation
,”
Lancet
375
(
9721
),
1212
1223
(
2010
).
16.
E. N.
Prystowsky
,
B. J.
Padanilam
, and
R. I.
Fogel
, “
Treatment of atrial fibrillation
,”
JAMA
314
(
3
),
278
288
(
2015
).
17.
Y.-X.
Xia
et al., “
Spiral wave drift under optical feedback in cardiac tissue
,”
Phys. Rev. E
106
(
2
),
024405
(
2022
).
18.
A.
Isomura
,
M.
Hörning
,
K.
Agladze
, and
K.
Yoshikawa
, “
Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli
,”
Phys. Rev. E
78
(
6
),
066216
(
2008
).
19.
T. J.
Colatsky
,
C. H.
Follmer
, and
C. F.
Starmer
, “
Channel specificity in antiarrhythmic drug action. Mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias
,”
Circulation
82
(
6
),
2235
2242
(
1990
).
20.
S.
Salari
,
M.
Silverå Ejneby
,
J.
Brask
, and
F.
Elinder
, “
Isopimaric acid—A multi-targeting ion channel modulator reducing excitability and arrhythmicity in a spontaneously beating mouse atrial cell line
,”
Acta Physiol.
222
(
1
),
e12895
(
2018
).
21.
S.
Okutucu
,
K.
Aytemir
, and
A.
Oto
, “
Glue septal ablation: A promising alternative to alcohol septal ablation
,”
JRSM Cardiovasc. Dis.
5
,
2048004016636313
(
2016
).
22.
A.
Amin
,
A.
Houmsse
,
A.
Ishola
,
J.
Tyler
, and
M.
Houmsse
, “
The current approach of atrial fibrillation management
,”
Avicenna J. Med.
06
(
01
),
8
16
(
2016
).
23.
R. N.
Van Gelder
, “
Photochemical approaches to vision restoration
,”
Vision Res.
111
,
134
141
(
2015
).
24.
I. S.
Erofeev
,
N.
Magome
, and
K. I.
Agladze
, “
Digital photocontrol of the network of live excitable cells
,”
JETP Lett.
94
(
6
),
477
480
(
2011
).
25.
S. R.
Frolova
,
O.
Gaiko
,
V. A.
Tsvelaya
,
O. Y.
Pimenov
, and
K. I.
Agladze
, “
Photocontrol of voltage-gated ion channel activity by azobenzene trimethylammonium bromide in neonatal Rat cardiomyocytes
,”
PLoS One
11
(
3
),
e0152018
(
2016
).
26.
S.
Hussaini
,
V.
Venkatesan
,
V.
Biasci
,
J. M. R.
Sepúlveda
,
R. A. Q.
Uribe
,
L.
Sacconi
, and
S.
Luther
, “
Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination
,”
Elife
10
,
e59954
(
2021
).
27.
S. F.
Pravdin
,
T. I.
Epanchintsev
, and
A. V.
Panfilov
, “
Overdrive pacing of spiral waves in a model of human ventricular tissue
,”
Sci. Rep.
10
(
1
),
1
14
(
2020
).
28.
T.
Korhonen
,
S. L.
Hänninen
, and
P.
Tavi
, “
Model of excitation-contraction coupling of rat neonatal ventricular myocytes
,”
Biophys. J.
96
(
3
),
1189
1209
(
2009
).
29.
R.
Majumder
,
M. C.
Engels
,
A. A.
de Vries
,
A. V.
Panfilov
, and
D. A.
Pijnappels
, “
Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium
,”
Sci. Rep.
6
(
1
),
1
12
(
2016
).
30.
K. H.
ten Tusscher
,
D.
Noble
,
P. J.
Noble
, and
A. V.
Panfilov
, “
A model for human ventricular tissue
,”
Am. J. Physiol.-Heart Circ. Physiol.
286
,
H1573
H1589
(
2004
).
31.
D.
Pazó
,
L.
Kramer
,
A.
Pumir
,
S.
Kanani
,
I.
Efimov
, and
V.
Krinsky
, “
Pinning force in active media
,”
Phys. Rev. Lett.
93
(
16
),
168303
(
2004
).
32.
V. I.
Krinsky
and
K. I.
Agladze
, “
Interaction of rotating waves in an active chemical medium
,”
Physica D
8
(
1–2
),
50
56
(
1983
).
33.
G.
Huyet
,
C.
Dupont
,
T.
Corriol
, and
V.
Krinsky
, “
Unpinning of a vortex in a chemical excitable medium
,”
Int. J. Bifurc. Chaos
08
(
06
),
1315
1323
(
1998
).
34.
T.
Epanchintsev
,
S.
Pravdin
, and
A.
Panfilov
, “
Simulation of spiral wave superseding in the Luo–Rudy anisotropic model of cardiac tissue with circular-shaped fibres
,”
J. Comput. Sci.
32
,
1
11
(
2019
).
35.
A. V.
Panfilov
,
S. C.
Müller
,
V. S.
Zykov
, and
J. P.
Keener
, “
Elimination of spiral waves in cardiac tissue by multiple electrical shocks
,”
Phys. Rev. E
61
(
4
),
4644
4647
(
2000
).
36.
K.
Agladze
,
J. P.
Keener
,
S. C.
Müller
, and
A.
Panfilov
, “
Rotating spiral waves created by geometry
,”
Science
264
(
5166
),
1746
1748
(
1994
).
37.
R.
Majumder
,
I.
Feola
,
A. S.
Teplenin
,
A. A. F.
de Vries
,
A. V.
Panfilov
, and
D. A.
Pijnappels
, “
Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system
,”
Elife
7
,
e41076
(
2018
).
38.
M.
Markus
,
Z.
Nagy-Ungvarai
, and
B.
Hess
, “
Phototaxis of spiral waves
,”
Science
257
(
5067
),
225
227
(
1992
).
39.
E.
Nakouzi
,
J. F.
Totz
,
Z.
Zhang
,
O.
Steinbock
, and
H.
Engel
, “
Hysteresis and drift of spiral waves near heterogeneities: From chemical experiments to cardiac simulations
,”
Phys. Rev. E
93
(
2
),
022203
(
2016
).
40.
J. M.
Davidenko
,
A. V.
Pertsov
,
R.
Salomonsz
,
W.
Baxter
, and
J.
Jalife
, “
Stationary and drifting spiral waves of excitation in isolated cardiac muscle
,”
Nature
355
(
6358
),
349
351
(
1992
).
41.
I. M.
Welleman
,
M. W.
Hoorens
,
B. L.
Feringa
,
H. H.
Boersma
, and
W.
Szymański
, “
Photoresponsive molecular tools for emerging applications of light in medicine
,”
Chem. Sci.
11
(
43
),
11672
11691
(
2020
).
42.
V. N.
Kachalov
,
V. A.
Tsvelaya
,
N. N.
Kudryashova
, and
K. I.
Agladze
, “
Success of spiral wave unpinning from heterogeneity in a cardiac tissue depends on its boundary conditions
,”
JETP Lett.
106
(
9
),
608
612
(
2017
).
43.
M. S.
Wathen
,
P. J.
DeGroot
,
M. O.
Sweeney
,
A. J.
Stark
,
M. F.
Otterness
,
W. O.
Adkisson
, and
K. J.
Volosin
, “
Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators: Pacing fast ventricular tachycardia reduces shock therapies (PainFREE Rx II) trial results
,”
Circulation
110
(
17
),
2591
2596
(
2004
).
44.
S.
Kauffman
, “
Singularities: When time breaks down. The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Arthur T. Winfree, Princeton University Press, Princeton, NJ, 1987. xiv, 339 p., illus. 60; paper, 19.95
,”
Science
237
(
4820
),
1360
(
1987
).
45.
T.
Martins-Marques
,
S. I.
Anjo
,
P.
Pereira
,
B.
Manadas
, and
H.
Girão
, “
Interacting network of the gap junction (GJ) protein connexin43 (Cx43) is modulated by ischemia and reperfusion in the heart
,”
Mol. Cell. Proteomics
14
(
11
),
3040
3055
(
2015
).
46.
Dataset:
M. M.
Slotvitsky
,
A. K.
Berezhnoy
,
V. A.
Tsvelaya
(
2022
). “Conduction of excitation waves and reentry drift on cardiac tissue with simulated photocontrol-varied excitability,”
GitHub.
https://github.com/Tsvelaya/Conduction-of-excitation-waves
47.
Dataset:
M. M.
Slotvitsky
,
A. K.
Berezhnoy
,
V. A.
Tsvelaya
(
2022
). “Conduction of excitation waves and reentry drift on cardiac tissue with simulated photocontrol-varied excitability”
Dropbox.
https://www.dropbox.com/sh/mw0drelor8f8dbs/AACGh15nQZg2CRq-1TV6oda8a?dl=0
You do not currently have access to this content.