Connecting memristors into any neural circuit can enhance its potential controllability under external physical stimuli. Memristive current along a magnetic flux-controlled memristor can estimate the effect of electromagnetic induction on neural circuits and neurons. Here, a charge-controlled memristor is incorporated into one branch circuit of a simple neural circuit to estimate the effect of an external electric field. The field energy kept in each electric component is respectively calculated, and equivalent dimensionless energy function H is obtained to discern the firing mode dependence on the energy from capacitive, inductive, and memristive channels. The electric field energy HM in a memristive channel occupies the highest proportion of Hamilton energy H, and neurons can present chaotic/periodic firing modes because of large energy injection from an external electric field, while bursting and spiking behaviors emerge when magnetic field energy HL holds maximal proportion of Hamilton energy H. The memristive current is modified to control the firing modes in this memristive neuron accompanying with a parameter shift and shape deformation resulting from energy accommodation in the memristive channel. In the presence of noisy disturbance from an external electric field, stochastic resonance is induced in the memristive neuron. Exposed to stronger electromagnetic field, the memristive component can absorb more energy and behave as a signal source for energy shunting, and negative Hamilton energy is obtained for this neuron. The new memristive neuron model can address the main physical properties of biophysical neurons, and it can further be used to explore the collective behaviors and self-organization in networks under energy flow and noisy disturbance.

1.
S. R.
Puiggros
and
D.
Jabaudon
, “
Light-dependent development is tailored in visual neurons
,”
Nature
603
,
37
38
(
2022
).
2.
F.
Wu
,
J.
Ma
, and
G.
Zhang
, “
Energy estimation and coupling synchronization between biophysical neurons
,”
Sci. China Technol. Sci.
63
,
625
636
(
2020
).
3.
R. C.
Sotero
and
N. J.
Trujillo-Barreto
, “
Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism
,”
Neuroimage
39
,
290
309
(
2008
).
4.
E.
Av-Ron
,
H.
Parnas
, and
L. A.
Segel
, “
A basic biophysical model for bursting neurons
,”
Biol. Cybern.
69
,
87
95
(
1993
).
5.
J.
Oesterle
,
C.
Behrens
,
C.
Schröder
 et al., “
Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
,”
Elife
9
,
e54997
(
2020
).
6.
L. N.
Groschner
,
J. G.
Malis
,
B.
Zuidinga
 et al., “
A biophysical account of multiplication by a single neuron
,”
Nature
603
,
119
123
(
2022
).
7.
M. E.
Tagluk
and
I.
Isik
, “
Communication in nano devices: Electronic based biophysical model of a neuron
,”
Nano Commun. Netw.
19
,
134
147
(
2019
).
8.
M. Y.
Yim
,
A.
Aertsen
, and
S.
Rotter
, “
Impact of intrinsic biophysical diversity on the activity of spiking neurons
,”
Phys. Rev. E
87
,
032710
(
2013
).
9.
Y.
Xie
,
Z.
Yao
,
X.
Hu
 et al., “
Enhance sensitivity to illumination and synchronization in light-dependent neurons
,”
Chin. Phys. B
30
,
120510
(
2021
).
10.
Y.
Liu
,
W.
Xu
,
J.
Ma
 et al., “
A new photosensitive neuron model and its dynamics
,”
Front. Inf. Technol. Electron. Eng.
21
,
1387
1396
(
2020
).
11.
Y.
Xu
and
J.
Ma
, “
Control of firing activities in thermosensitive neuron by activating excitatory autapse
,”
Chin. Phys. B
30
,
100501
(
2021
).
12.
L.
Wiles
,
S.
Gu
,
F.
Pasqualetti
 et al., “
Autaptic connections shift network excitability and bursting
,”
Sci. Rep.
7
,
44006
(
2017
).
13.
C.
Yao
,
Z.
He
,
T.
Nakano
 et al., “
Inhibitory-autapse-enhanced signal transmission in neural networks
,”
Nonlinear Dyn.
97
,
1425
1437
(
2019
).
14.
Y.
Guo
,
P.
Zhou
,
Z.
Yao
 et al., “
Biophysical mechanism of signal encoding in an auditory neuron
,”
Nonlinear Dyn.
105
,
3603
3614
(
2021
).
15.
X.
Zhang
and
J.
Ma
, “
Wave filtering and firing modes in a light-sensitive neural circuit
,”
J. Zhejiang Univ. Sci. A
22
,
707
720
(
2021
).
16.
Y.
Xie
and
J.
Ma
, “
How to discern external acoustic waves in a piezoelectric neuron under noise?
,”
J. Biol. Phys.
48
,
339
353
(
2022
).
17.
Y.
Xie
,
P.
Zhou
,
Z.
Yao
 et al., “
Response mechanism in a functional neuron under multiple stimuli
,”
Phys. A
607
,
128175
(
2022
).
18.
Y.
Xie
,
P.
Zhou
, and
J.
Ma
, “
Energy balance and synchronization via inductive-coupling in functional neural circuits
,”
Appl. Math. Modell.
113
,
175
187
(
2023
).
19.
P.
Zhou
,
X.
Zhang
, and
J.
Ma
, “
How to wake up the electric synapse coupling between neurons?
,”
Nonlinear Dyn.
108
,
1681
1695
(
2022
).
20.
Y.
Wang
and
J.
Ma
, “
Creation of synaptic connection to memristive neurons under noise
,”
Optik
270
,
170011
(
2022
).
21.
Y.
Zhang
,
Y.
Xu
,
Z.
Yao
 et al., “
A feasible neuron for estimating the magnetic field effect
,”
Nonlinear Dyn.
102
,
1849
1867
(
2020
).
22.
Y.
Zhang
,
C. N.
Wang
,
J.
Tang
 et al., “
Phase coupling synchronization of FHN neurons connected by a Josephson junction
,”
Sci. China Technol. Sci.
63
,
2328
2338
(
2020
).
23.
Y.
Xu
,
M.
Liu
,
Z.
Zhu
 et al., “
Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
,”
Chin. Phys. B
29
,
098704
(
2020
).
24.
Y.
Xu
and
J.
Ma
, “
Pattern formation in a thermosensitive neural network
,”
Commun. Nonlinear Sci. Numer. Simul.
111
,
106426
(
2022
).
25.
J. F.
Tagne
,
H. C.
Edima
,
Z. T.
Njitacke
 et al., “
Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance
,”
Eur. Phys. J. Spec. Top.
231
,
993
1004
(
2022
).
26.
Y.
Guo
,
C.
Wang
,
Z.
Yao
 et al., “
Desynchronization of thermosensitive neurons by using energy pumping
,”
Phys. A
602
,
127644
(
2022
).
27.
X.
Ma
and
Y.
Xu
, “
Taming the hybrid synapse under energy balance between neurons
,”
Chaos, Solitons Fractals
159
,
112149
(
2022
).
28.
H.
Yu
,
X.
Guo
, and
J.
Wang
, “
Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay
,”
Commun. Nonlinear Sci. Numer. Simul.
42
,
532
544
(
2017
).
29.
A.
Calim
,
J. J.
Torres
,
M.
Ozer
 et al., “
Chimera states in hybrid coupled neuron populations
,”
Neural Netw.
126
,
108
117
(
2020
).
30.
K.
Xu
,
J. P.
Maidana
, and
P.
Orio
, “
Diversity of neuronal activity is provided by hybrid synapses
,”
Nonlinear Dyn.
105
,
2693
2710
(
2021
).
31.
Z.
Yao
and
C.
Wang
, “
Collective behaviors in a multiple functional network with hybrid synapses
,”
Physica A
605
,
127981
(
2022
).
32.
Z.
Yao
and
C.
Wang
, “
Control the collective behaviors in a functional neural network
,”
Chaos, Solitons Fractals
152
,
111361
(
2021
).
33.
P.
Zhou
,
X.
Zhang
,
X.
Hu
 et al., “
Energy balance between two thermosensitive circuits under field coupling
,”
Nonlinear Dyn.
110
,
1879
1895
(
2022
).
34.
Z.
Yao
,
C.
Wang
,
P.
Zhou
 et al., “
Regulating synchronous patterns in neurons and networks via field coupling
,”
Commun. Nonlinear Sci. Numer. Simul.
95
,
105583
(
2021
).
35.
F. Q.
Wu
,
J.
Ma
, and
G.
Zhang
, “
Energy estimation and coupling synchronization between biophysical neurons
,”
Sci. China Technol. Sci.
63
,
625
636
(
2020
).
36.
H.
Bao
,
Y.
Zhang
,
W.
Liu
 et al., “
Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera
,”
Nonlinear Dyn.
100
,
937
950
(
2020
).
37.
M.
Khalid
, “
Review on various memristor models, characteristics, potential applications, and future works
,”
Trans. Electr. Electron. Mater.
20
,
289
298
(
2019
).
38.
B.
Chen
,
Q.
Xu
,
M.
Chen
 et al., “
Initial-condition-switched boosting extreme multistability and mechanism analysis in a memcapacitive oscillator
,”
Front. Inf. Technol. Electron. Eng.
22
,
1517
1531
(
2021
).
39.
M. J.
Sharifi
and
Y. M.
Banadaki
, “
General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells
,”
J. Circuits Syst. Comput.
19
,
407
424
(
2010
).
40.
K.
Rajagopal
,
S.
Kacar
,
Z.
Wei
 et al., “
Dynamical investigation and chaotic associated behaviors of memristor Chua's circuit with a non-ideal voltage-controlled memristor and its application to voice encryption
,”
AEU-Int. J. Electron. Commun.
107
,
183
191
(
2019
).
41.
Y.
Zhang
,
W.
He
,
Y.
Wu
 et al., “
Highly compact artificial memristive neuron with low energy consumption
,”
Small
14
,
1802188
(
2018
).
42.
Y.
Babacan
,
F.
Kaçar
, and
K.
Gürkan
, “
A spiking and bursting neuron circuit based on memristor
,”
Neurocomputing
203
,
86
91
(
2016
).
43.
M. S.
Feali
,
A.
Ahmadi
, and
M.
Hayati
, “
Implementation of adaptive neuron based on memristor and memcapacitor emulators
,”
Neurocomputing
309
,
157
167
(
2018
).
44.
H.
Bao
,
W.
Liu
,
J.
Ma
 et al., “
Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns
,”
Int. J. Bifurcat. Chaos
30
,
2030029
(
2020
).
45.
F.
Wu
and
H.
Gu
, “
Bifurcations of negative responses to positive feedback current mediated by memristor in a neuron model with bursting patterns
,”
Int. J. Bifurcat. Chaos
30
,
2030009
(
2020
).
46.
L.
Zhao
,
Q.
Hong
, and
X.
Wang
, “
Novel designs of spiking neuron circuit and STDP learning circuit based on memristor
,”
Neurocomputing
314
,
207
214
(
2018
).
47.
Q.
Hong
,
L.
Zhao
, and
X.
Wang
, “
Novel circuit designs of memristor synapse and neuron
,”
Neurocomputing
330
,
11
16
(
2019
).
48.
Y.
Tan
and
C.
Wang
, “
A simple locally active memristor and its application in HR neurons
,”
Chaos
30
,
053118
(
2020
).
49.
L.
Xu
,
G.
Qi
, and
J.
Ma
, “
Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method
,”
Appl. Math. Modell.
101
,
503
516
(
2022
).
50.
F.
Wu
,
X.
Hu
, and
J.
Ma
, “
Estimation of the effect of magnetic field on a memristive neuron
,”
Appl. Math. Comput.
432
,
127366
(
2022
).
51.
B. C.
Jang
,
S.
Kim
,
S. Y.
Yang
 et al., “
Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system
,”
Nano Lett.
19
,
839
849
(
2019
).
52.
R.
Yang
,
H. M.
Huang
, and
X.
Guo
, “
Memristive synapses and neurons for bioinspired computing
,”
Adv. Electron. Mater.
5
,
1900287
(
2019
).
53.
K.
Long
and
X.
Zhang
, “
Memristive-synapse spiking neural networks based on single-electron transistors
,”
J. Comput. Electron.
19
,
435
450
(
2020
).
54.
S. H.
Sung
,
T. J.
Kim
,
H.
Shin
 et al., “
Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse
,”
Nat. Commun.
13
,
2811
(
2022
).
55.
A.
Serb
,
A.
Corna
,
R.
George
 et al., “
Memristive synapses connect brain and silicon spiking neurons
,”
Sci. Rep.
10
,
2590
(
2020
).
56.
Y.
Guo
,
Z.
Zhu
,
C.
Wang
 et al., “
Coupling synchronization between photoelectric neurons by using memristive synapse
,”
Optik
218
,
164993
(
2020
).
57.
F.
Wu
,
Y.
Zhang
, and
X.
Zhang
, “
Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling
,”
Nonlinear Dyn.
98
,
971
984
(
2019
).
58.
F.
Wu
,
Y.
Guo
, and
J.
Ma
, “
Reproduce the biophysical function of chemical synapse by using a memristive synapse
,”
Nonlinear Dyn.
109
,
2063
2084
(
2022
).
59.
M. S.
Kafraj
,
F.
Parastesh
, and
S.
Jafari
, “
Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise
,”
Chaos, Solitons Fractals
137
,
109782
(
2020
).
60.
N.
Zandi-Mehran
,
S.
Jafari
,
S.
Hashemi Golpayegani
 et al., “
Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field
,”
Nonlinear Dyn.
100
,
1809
1824
(
2020
).
61.
Z.
Guo
,
H. H. C.
Iu
,
G.
Si
 et al., “
A phasor analysis method for charge-controlled memory elements
,”
Int. J. Bifurcat. Chaos
30
,
2030041
(
2020
).
62.
S.
Wu
,
X.
Rong
, and
Z.
Liu
, “
Study on how to design simplest chaotic circuit with two charge-controlled memristors
,”
J. Syst. Simul.
30
,
3985
(
2018
).
63.
O.
Kavehei
,
A.
Iqbal
,
Y. S.
Kim
 et al., “
The fourth element: Characteristics, modelling and electromagnetic theory of the memristor
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
466
,
2175
2202
(
2010
).
64.
A. A.
Gismatulin
,
V. A.
Gritsenko
,
T. J.
Yen
 et al., “
Charge transport mechanism in SiNx-based memristor
,”
Appl. Phys. Lett.
115
,
253502
(
2019
).
65.
D.
Biolek
,
Z.
Kohl
,
J.
Vavra
 et al., “
Mutual transformation of flux-controlled and charge-controlled memristors
,”
IEEE Access
10
,
68307
68318
(
2022
).
66.
Z. P.
Tan
,
H. J.
Yang
,
Q. N.
Liu
 et al., “
Analysis and implementation of a simplest charge-controlled memristor chaotic circuit
,”
Chin. J. Comput. Phys.
32
,
496
(
2015
).
67.
Y.
Liu
,
H. H. C.
Iu
,
Z.
Guo
 et al., “
The simple charge-controlled grounded/floating mem-element emulator
,”
IEEE Trans. Circuits Syst. II: Express Br.
68
,
2177
2181
(
2020
).
68.
Z. Q.
Chen
,
H.
Tang
,
Z. L.
Wang
 et al., “
Design and circuit implementation for a novel charge-controlled chaotic memristor system
,”
J. Appl. Anal. Comput.
5
,
251
261
(
2015
).
69.
A.
Isah
,
A. S. T.
Nguetcho
,
S.
Binczak
, et al., “
Dynamics of a charge-controlled memristor in master-slave coupling
,”
Electron. Lett.
56
,
211–213
(
2020
).
70.
K.
Bhardwaj
and
M.
Srivastava
, “
Compact charge-controlled memristance simulator with electronic/resistive tunability
,”
J. Circuits Syst. Comput.
31
,
2250094
(
2022
).
71.
I. M.
Kyprianidis
,
V.
Papachristou
,
I. N.
Stouboulos
 et al., “
Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators
,”
WSEAS T Trans. Syst.
11
,
516
526
(
2012
).
72.
D. H.
Kobe
, “
Helmholtz's theorem revisited
,”
Am. J. Phys.
54
,
552
554
(
1986
).
73.
P.
Zhou
,
X.
Hu
,
Z.
Zhu
 et al., “
What is the most suitable Lyapunov function?
,”
Chaos, Solitons Fractals
150
,
111154
(
2021
).
74.
J.
Ma
,
Z.
Yang
,
L.
Yang
 et al., “
A physical view of computational neurodynamics
,”
J. Zhejiang Univ. Sci. A
20
,
639
659
(
2019
).
75.
J.
Ma
, “
Chaos theory and applications: The physical evidence, mechanism are important in chaotic systems
,”
Chaos Theory Appl.
4
,
1
3
(
2022
).
76.
J.
Ma
, “
Biophysical neurons, energy and synapse controllability: A review
,”
J. Zhejiang Univ. Sci. A
(
2022
).
77.
S.
Majhi
,
M.
Perc
, and
D.
Ghosh
, “
Dynamics on higher-order networks: A review
,”
J. R. Soc. Interface
19
(
188
),
20220043
(
2022
).
78.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
 et al., “
Chimeras
,”
Phys. Rep.
898
,
1
114
(
2021
).
79.
Z.
Gao
,
W.
Dang
,
X.
Wang
 et al., “
Complex networks and deep learning for EEG signal analysis
,”
Cogn. Neurodyn.
15
,
369
388
(
2021
).
80.
M.
Gosak
,
R.
Markovič
,
J.
Dolenšek
 et al., “
Network science of biological systems at different scales: A review
,”
Phys. Life Rev.
24
,
118
135
(
2018
).
81.
G.
Quaranta
,
W.
Lacarbonara
, and
S. F.
Masri
, “
A review on computational intelligence for identification of nonlinear dynamical systems
,”
Nonlinear Dyn.
99
,
1709
1761
(
2020
).
You do not currently have access to this content.