Ordinal time series analysis is based on the idea to map time series to ordinal patterns, i.e., order relations between the values of a time series and not the values themselves, as introduced in 2002 by C. Bandt and B. Pompe. Despite a resulting loss of information, this approach captures meaningful information about the temporal structure of the underlying system dynamics as well as about properties of interactions between coupled systems. This—together with its conceptual simplicity and robustness against measurement noise—makes ordinal time series analysis well suited to improve characterization of the still poorly understood spatiotemporal dynamics of the human brain. This minireview briefly summarizes the state-of-the-art of uni- and bivariate ordinal time-series-analysis techniques together with applications in the neurosciences. It will highlight current limitations to stimulate further developments, which would be necessary to advance characterization of evolving functional brain networks.

1.
B. L.
Hao
,
Elementary Symbolic Dynamics and Chaos in Dissipative Systems
(
World Scientific
,
Singapore
,
1989
).
2.
C.
Daw
,
C.
Finney
, and
E.
Tracy
, “
A review of symbolic analysis of experimental data
,”
Rev. Sci. Instrum.
74
,
915
930
(
2003
).
3.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
4.
M.
Staniek
and
K.
Lehnertz
, “
Parameter selection in permutation entropy measurements
,”
Int. J. Bifurcation Chaos
17
,
3729
(
2007
).
5.
S.
Berger
,
A.
Kravtsiv
,
G.
Schneider
, and
D.
Jordan
, “
Teaching ordinal patterns to a computer: Efficient encoding algorithms based on the Lehmer code
,”
Entropy
21
,
1023
(
2019
).
6.
A.
Myers
and
F. A.
Khasawneh
, “
On the automatic parameter selection for permutation entropy
,”
Chaos
30
,
033130
(
2020
).
7.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence (Warwick 1980), Lecture Notes in Mathematics Vol. 898, edited by D. A. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
8.
T.
Sauer
,
J.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
9.
J.
Amigó
,
Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation Entropy and All That
(
Springer Science & Business Media
,
2010
).
10.
M.
Zanin
,
L.
Zunino
,
O. A.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
11.
J. M.
Amigó
,
K.
Keller
, and
J.
Kurths
, “
Recent progress in symbolic dynamic and permutation complexity: Ten years of permutation entropy
,”
Eur. Phys. J.: Spec. Top.
222
,
241
(
2013
).
12.
V. A.
Unakafova
and
K.
Keller
, “
Efficiently measuring complexity on the basis of real-world data
,”
Entropy
15
,
4392
4415
(
2013
).
13.
J. M.
Amigó
,
K.
Keller
, and
V. A.
Unakafova
, “
Ordinal symbolic analysis and its application to biomedical recordings
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
373
,
20140091
(
2015
).
14.
K.
Keller
,
T.
Mangold
,
I.
Stolz
, and
J.
Werner
, “
Permutation entropy: New ideas and challenges
,”
Entropy
19
,
134
(
2017
).
15.
K.
Keller
, “
Entropy measures for data analysis: Theory, algorithms and applications
,”
Entropy
21
,
935
(
2019
).
16.
A. B.
Piek
,
I.
Stolz
, and
K.
Keller
, “
Algorithmics, possibilities and limits of ordinal pattern based entropies
,”
Entropy
21
,
547
(
2019
).
17.
T.
Gutjahr
and
K.
Keller
, “
Ordinal pattern based entropies and the Kolmogorov–Sinai entropy: An update
,”
Entropy
22
,
63
(
2020
).
18.
M.
Zanin
and
F.
Olivares
, “
Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
,”
Commun. Phys.
4
,
190
(
2021
).
19.
I.
Leyva
,
J. H.
Martínez
,
C.
Masoller
,
O. A.
Rosso
, and
M.
Zanin
, “
20 years of ordinal patterns: Perspectives and challenges
,”
Europhys. Lett.
138
,
31001
(
2022
).
20.
J. M.
Amigó
,
S.
Zambrano
, and
M. A.
Sanjuán
, “
Detecting determinism in time series with ordinal patterns: A comparative study
,”
Int. J. Bifurcation Chaos
20
,
2915
2924
(
2010
).
21.
M.
Small
,
M.
McCullough
, and
K.
Sakellariou
, “Ordinal network measures—Quantifying determinism in data,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–5.
22.
Y.
Hirata
,
M.
Shiro
, and
J. M.
Amigó
, “
Surrogate data preserving all the properties of ordinal patterns up to a certain length
,”
Entropy
21
,
713
(
2019
).
23.
Y.
Cao
,
W.
Tung
,
J. B.
Gao
,
V. A.
Protopopescu
, and
L. M.
Hively
, “
Detecting dynamical changes in time series using the permutation entropy
,”
Phys. Rev. E
70
,
046217
(
2004
).
24.
U.
Parlitz
,
H.
Suetani
, and
S.
Luther
, “
Identification of equivalent dynamics using ordinal pattern distributions
,”
Eur. Phys. J.: Spec. Top.
222
,
553
568
(
2013
).
25.
M.
Zanin
,
A.
Rodríguez-González
,
E.
Menasalvas Ruiz
, and
D.
Papo
, “
Assessing time series reversibility through permutation patterns
,”
Entropy
20
,
665
(
2018
).
26.
O. A.
Rosso
,
H.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
27.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
28.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
29.
M.
Barthélemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
30.
P.
Holme
and
J.
Saramäki
, “
Temporal networks
,”
Phys. Rep.
519
,
97
125
(
2012
).
31.
D. S.
Bassett
and
O.
Sporns
, “
Network neuroscience
,”
Nat. Neurosci.
20
,
353
364
(
2017
).
32.
M.
Gosak
,
R.
Markovič
,
J.
Dolenšek
,
M. S.
Rupnik
,
M.
Marhl
,
A.
Stožer
, and
M.
Perc
, “
Network science of biological systems at different scales: A review
,”
Phys. Life Rev.
24
,
118
135
(
2018
).
33.
A.
Halu
,
M.
De Domenico
,
A.
Arenas
, and
A.
Sharma
, “
The multiplex network of human diseases
,”
NPJ Syst. Biol. Appl.
5
,
15
(
2019
).
34.
P.
Wang
, “
Network biology: Recent advances and challenges
,”
GPD
1
,
101
(
2022
).
35.
A. A.
Ioannides
, “
Dynamic functional connectivity
,”
Curr. Opin. Neurobiol.
17
,
161
170
(
2007
).
36.
C. T.
Butts
, “
Revisiting the foundations of network analysis
,”
Science
325
,
414
416
(
2009
).
37.
S.
Bialonski
,
M.
Horstmann
, and
K.
Lehnertz
, “
From brain to earth and climate systems: Small-world interaction networks or not?
,”
Chaos
20
,
013134
(
2010
).
38.
J.
Hlinka
,
D.
Hartman
, and
M.
Paluš
, “
Small-world topology of functional connectivity in randomly connected dynamical systems
,”
Chaos
22
,
033107
(
2012
).
39.
D.
Papo
,
M.
Zanin
,
J. H.
Martínez
, and
J. M.
Buldú
, “
Beware of the small-world neuroscientist!
,”
Front. Hum. Neurosci.
10
,
96
(
2016
).
40.
J.
Hlinka
,
D.
Hartman
,
N.
Jajcay
,
D.
Tomeček
,
J.
Tintěra
, and
M.
Paluš
, “
Small-world bias of correlation networks: From brain to climate
,”
Chaos
27
,
035812
(
2017
).
41.
O.
Korhonen
,
M.
Zanin
, and
D.
Papo
, “
Principles and open questions in functional brain network reconstruction
,”
Hum. Brain Mapp.
42
,
3680
3711
(
2021
).
42.
T.
Rings
,
T.
Bröhl
, and
K.
Lehnertz
, “
Network structure from a characterization of interactions in complex systems
,”
Sci. Rep.
12
,
11742
(
2022
).
43.
K.
Lehnertz
,
G.
Ansmann
,
S.
Bialonski
,
H.
Dickten
,
C.
Geier
, and
S.
Porz
, “
Evolving networks in the human epileptic brain
,”
Physica D
267
,
7
15
(
2014
).
44.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
45.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
46.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge, UK
,
2003
).
47.
E.
Pereda
,
R.
Quian Quiroga
, and
J.
Bhattacharya
, “
Nonlinear multivariate analysis of neurophysiological signals
,”
Prog. Neurobiol.
77
,
1
37
(
2005
).
48.
K.
Hlaváčková-Schindler
,
M.
Paluš
,
M.
Vejmelka
, and
J.
Bhattacharya
, “
Causality detection based on information-theoretic approaches in time series analysis
,”
Phys. Rep.
441
,
1
46
(
2007
).
49.
N.
Marwan
,
M. C.
Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
50.
K.
Lehnertz
, “
Assessing directed interactions from neurophysiological signals—An overview
,”
Physiol. Meas.
32
,
1715
1724
(
2011
).
51.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Coupling functions: Universal insights into dynamical interaction mechanisms
,”
Rev. Mod. Phys.
89
,
045001
(
2017
).
52.
J.
Runge
, “
Causal network reconstruction from time series: From theoretical assumptions to practical estimation
,”
Chaos
28
,
075310
(
2018
).
53.
L.
Rydin Gorjão
,
J.
Heysel
,
K.
Lehnertz
, and
M. R. R.
Tabar
, “
Analysis and data-driven reconstruction of bivariate jump-diffusion processes
,”
Phys. Rev. E
100
,
062127
(
2019
).
54.
M. R. R.
Tabar
,
Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes
(
Springer
,
Cham, Switzerland
,
2019
).
55.
A.
Papana
, “
Connectivity analysis for multivariate time series: Correlation vs causality
,”
Entropy
23
,
1570
(
2021
).
56.
A.
Papana
,
E.
Siggiridou
, and
D.
Kugiumtzis
, “
Detecting direct causality in multivariate time series: A comparative study
,”
Commun. Nonlinear Sci. Numer. Simul.
99
,
105797
(
2021
).
57.
T.
Stankovski
,
T.
Pereira
,
P. V. E.
McClintock
, and
A.
Stefanovska
, “
Coupling functions: Dynamical interaction mechanisms in the physical, biological and social sciences
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
377
,
20190039
(
2019
).
58.
S.
Boccaletti
,
A. N.
Pisarchik
,
C. I.
Del Genio
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
Cambridge, UK
,
2018
).
59.
Z.
Liu
, “
Measuring the degree of synchronization from time series data
,”
Europhys. Lett.
68
,
19
25
(
2004
).
60.
I.
Echegoyen
,
V.
Vera-Ávila
,
R.
Sevilla-Escoboza
,
J. H.
Martínez
, and
J. M.
Buldú
, “
Ordinal synchronization: Using ordinal patterns to capture interdependencies between time series
,”
Chaos, Solitons Fractals
119
,
8
18
(
2019
).
61.
R.
Monetti
,
W.
Bunk
,
T.
Aschenbrenner
, and
F.
Jamitzky
, “
Characterizing synchronization in time series using information measures extracted from symbolic representations
,”
Phys. Rev. E
79
,
046207
(
2009
).
62.
J. M.
Amigo
,
R.
Monetti
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Transcripts: An algebraic approach to coupled time series
,”
Chaos
22
,
013105
(
2012
).
63.
R.
Monetti
,
J. M.
Amigó
,
T.
Aschenbrenner
, and
W.
Bunk
, “
Permutation complexity of interacting dynamical systems
,”
Eur. Phys. J.: Spec. Top.
222
,
421
436
(
2013
).
64.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
, 2nd ed. (
John Wiley & Sons
,
New York
,
2006
).
65.
T.
Bossomaier
,
L.
Barnett
, and
M.
Harré
,
An Introduction to Transfer Entropy
(
Springer
,
Cham, Switzerland
,
2016
).
66.
A.
Bahraminasab
,
F.
Ghasemi
,
A.
Stefanovska
,
P. V. E.
McClintock
, and
H.
Kantz
, “
Direction of coupling from phases of interacting oscillators: A permutation information approach
,”
Phys. Rev. Lett.
100
,
084101
(
2008
).
67.
M.
Staniek
and
K.
Lehnertz
, “
Symbolic transfer entropy
,”
Phys. Rev. Lett.
100
,
158101
(
2008
).
68.
M.
Staniek
and
K.
Lehnertz
, “
Symbolic transfer entropy: Inferring directionality in biosignals
,”
Biomed. Tech.
54
,
323
328
(
2009
).
69.
D.
Kugiumtzis
, “
Transfer entropy on rank vectors
,”
J. Nonlinear Syst. Appl.
3
,
73
81
(
2012
).
70.
H.
Dickten
and
K.
Lehnertz
, “
Identifying delayed directional couplings with symbolic transfer entropy
,”
Phys. Rev. E
90
,
062706
(
2014
).
71.
M.
Martini
,
T. A.
Kranz
,
T.
Wagner
, and
K.
Lehnertz
, “
Inferring directional interactions from transient signals with symbolic transfer entropy
,”
Phys. Rev. E
83
,
011919
(
2011
).
72.
B.
Pompe
and
J.
Runge
, “
Momentary information transfer as a coupling measure of time series
,”
Phys. Rev. E
83
,
051122
(
2011
).
73.
R.
Monetti
,
W.
Bunk
,
T.
Aschenbrenner
,
S.
Springer
, and
J. M.
Amigó
, “
Information directionality in coupled time series using transcripts
,”
Phys. Rev. E
88
,
022911
(
2013
).
74.
J. M.
Amigo
,
R.
Monetti
,
B.
Graff
, and
G.
Graff
, “
Computing algebraic transfer entropy and coupling directions via transcripts
,”
Chaos
26
,
113115
(
2016
).
75.
J. M.
Amigó
and
Y.
Hirata
, “
Detecting directional couplings from multivariate flows by the joint distance distribution
,”
Chaos
28
,
075302
(
2018
).
76.
Y.
Yin
,
X.
Wang
,
Q.
Li
,
P.
Shang
, and
F.
Hou
, “
Quantifying interdependence using the missing joint ordinal patterns
,”
Chaos
29
,
073114
(
2019
).
77.
M.
Porfiri
and
M.
Ruiz Marín
, “
Transfer entropy on symbolic recurrences
,”
Chaos
29
,
063123
(
2019
).
78.
D.
Kugiumtzis
, “
Partial transfer entropy on rank vectors
,”
Eur. Phys. J.: Spec. Top.
222
,
401
420
(
2013
).
79.
A.
Papana
,
C.
Kyrtsou
,
D.
Kugiumtzis
, and
C.
Diks
, “
Detecting causality in non-stationary time series using partial symbolic transfer entropy: Evidence in financial data
,”
Comput. Econ.
47
,
341
365
(
2016
).
80.
T.
Rings
and
K.
Lehnertz
, “
Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?
,”
Chaos
26
,
093106
(
2016
).
81.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
82.
J.
Zhang
,
J.
Zhou
,
M.
Tang
,
H.
Guo
,
M.
Small
, and
Y.
Zou
, “
Constructing ordinal partition transition networks from multivariate time series
,”
Sci. Rep.
7
,
7795
(
2017
).
83.
H.
Guo
,
J.-Y.
Zhang
,
Y.
Zou
, and
S.-G.
Guan
, “
Cross and joint ordinal partition transition networks for multivariate time series analysis
,”
Front. Phys.
13
,
130508
(
2018
).
84.
Y.
Ruan
,
R. V.
Donner
,
S.
Guan
, and
Y.
Zou
, “
Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series
,”
Chaos
29
,
043111
(
2019
).
85.
N. P.
Subramaniyam
,
R.
Donner
, V,
D.
Caron
,
G.
Panuccio
, and
J.
Hyttinen
, “
Causal coupling inference from multivariate time series based on ordinal partition transition networks
,”
Nonlinear Dyn.
105
,
555
578
(
2021
).
86.
K.
Lehnertz
,
C.
Geier
,
T.
Rings
, and
K.
Stahn
, “
Capturing time-varying brain dynamics
,”
EPJ Nonlinear Biomed. Phys.
5
,
2
(
2017
).
87.
E.
Niedermeyer
and
F.
Lopes da Silva
, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, edited by E. Niedermeyer and F. Lopes da Silva (Lippincott Williams & Wilkins, Philadelphia, PA, 2005).
88.
T.
Gisiger
, “
Scale invariance in biology: Coincidence or footprint of a universal mechanism?
,”
Biol. Rev.
76
,
161
209
(
2001
).
89.
C.
Bédard
,
H.
Kröger
, and
A.
Destexhe
, “
Does the 1/f frequency scaling of brain signals reflect self-organized critical states?
,”
Phys. Rev. Lett.
97
,
118102
(
2006
).
90.
S.
Marom
, “
Neural timescales or lack thereof
,”
Prog. Neurobiol.
90
,
16
28
(
2010
).
91.
G.
Werner
, “
Fractals in the nervous system: Conceptual implications for theoretical neuroscience
,”
Front. Psychol.
1
,
15
(
2010
).
92.
G.
Buzsáki
,
C. A.
Anastassiou
, and
C.
Koch
, “
The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes
,”
Nat. Rev. Neurosci.
13
,
407
420
(
2012
).
93.
B. J.
He
, “
Scale-free brain activity: Past, present, and future
,”
Trends Cogn. Sci.
18
,
480
487
(
2014
).
94.
K.
Keller
and
H.
Lauffer
, “
Symbolic analysis of high-dimensional time series
,”
Int. J. Bifurcation Chaos
13
,
2657
2668
(
2003
).
95.
K.
Keller
and
M.
Sinn
, “
Ordinal analysis of time series
,”
Phys. A
356
,
114
120
(
2005
).
96.
K.
Keller
,
H.
Lauffer
, and
M.
Sinn
, “
Ordinal analysis of EEG time series
,”
Chaos Complex. Lett.
2
,
247
258
(
2007
).
97.
G.
Ouyang
,
C.
Dang
,
D. A.
Richards
, and
X.
Li
, “
Ordinal pattern based similarity analysis for EEG recordings
,”
Clin. Neurophysiol.
121
,
694
703
(
2010
).
98.
K.
Schindler
,
H.
Gast
,
L.
Stieglitz
,
A.
Stibal
,
M.
Hauf
,
R.
Wiest
,
L.
Mariani
, and
C.
Rummel
, “
Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures
,”
Epilepsia
52
,
1771
1780
(
2011
).
99.
K.
Schindler
,
H.
Gast
,
M.
Goodfellow
, and
C.
Rummel
, “
On seeing the trees and the forest: Single-signal and multisignal analysis of periictal intracranial EEG
,”
Epilepsia
53
,
1658
1668
(
2012
).
100.
C.
Rummel
,
E.
Abela
,
M.
Hauf
,
R.
Wiest
, and
K.
Schindler
, “
Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI
,”
Eur. Phys. J.: Spec. Top.
222
,
569
585
(
2013
).
101.
K.
Keller
,
A. M.
Unakafov
, and
V. A.
Unakafova
, “
Ordinal patterns, entropy, and EEG
,”
Entropy
16
,
6212
6239
(
2014
).
102.
F. O.
Redelico
,
F.
Traversaro
,
M. d. C.
García
,
W.
Silva
,
O. A.
Rosso
, and
M.
Risk
, “
Classification of normal and pre-ictal EEG signals using permutation entropies and a generalized linear model as a classifier
,”
Entropy
19
,
72
(
2017
).
103.
K.
Zeng
,
G.
Ouyang
,
H.
Chen
,
Y.
Gu
,
X.
Liu
, and
X.
Li
, “
Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy
,”
Neurocomputing
275
,
577
585
(
2018
).
104.
M.
Granado
,
S.
Collavini
,
R.
Baravalle
,
N.
Martinez
,
M. A.
Montemurro
,
O. A.
Rosso
, and
F.
Montani
, “
High-frequency oscillations in the ripple bands and amplitude information coding: Toward a biomarker of maximum entropy in the preictal signals
,”
Chaos
32
,
093151
(
2022
).
105.
K.
Kalpakis
,
S.
Yang
,
P. F.
Hu
,
C. F.
Mackenzie
,
L. G.
Stansbury
,
D. M.
Stein
, and
T. M.
Scalea
, “
Permutation entropy analysis of vital signs data for outcome prediction of patients with severe traumatic brain injury
,”
Comput. Biol. Med.
56
,
167
174
(
2015
).
106.
F. C.
Morabito
,
D.
Labate
,
F. L.
Foresta
,
A.
Bramanti
,
G.
Morabito
, and
I.
Palamara
, “
Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG
,”
Entropy
14
,
1186
1202
(
2012
).
107.
G.-S.
Yi
,
J.
Wang
,
B.
Deng
, and
X.-L.
Wei
, “
Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease
,”
Cogn. Neurodyn.
11
,
147
160
(
2017
).
108.
J.
Amigó
,
S.
Zambrano
, and
M.
Sanjuán
, “
Permutation complexity of spatiotemporal dynamics
,”
Europhys. Lett.
90
,
10007
(
2010
).
109.
N.
Nicolaou
and
J.
Georgiou
, “
The use of permutation entropy to characterize sleep electroencephalograms
,”
Clin. EEG Neurosci.
42
,
24
28
(
2011
).
110.
C.
Bandt
, “
A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure
,”
Entropy
19
,
197
(
2017
).
111.
J.
González
,
M.
Cavelli
,
A.
Mondino
,
C.
Pascovich
,
S.
Castro-Zaballa
,
P.
Torterolo
, and
N.
Rubido
, “
Decreased electrocortical temporal complexity distinguishes sleep from wakefulness
,”
Sci. Rep.
9
,
18457
(
2019
).
112.
F.
Hou
,
L.
Zhang
,
B.
Qin
,
G.
Gaggioni
,
X.
Liu
, and
G.
Vandewalle
, “
Changes in EEG permutation entropy in the evening and in the transition from wake to sleep
,”
Sleep
44
,
zsaa226
(
2021
).
113.
S. I.
Dimitriadis
,
N. A.
Laskaris
,
V.
Tsirka
,
S.
Erimaki
,
M.
Vourkas
,
S.
Micheloyannis
, and
S.
Fotopoulos
, “
A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks
,”
Cogn. Neurodyn.
6
,
107
113
(
2012
).
114.
S.
Dimitriadis
,
Y.
Sun
,
N.
Laskaris
,
N.
Thakor
, and
A.
Bezerianos
, “
Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: A novel vector-quantization approach
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
24
,
1017
1028
(
2016
).
115.
C.
Quintero-Quiroz
,
L.
Montesano
,
A. J.
Pons
,
M. C.
Torrent
,
J.
García-Ojalvo
, and
C.
Masoller
, “
Differentiating resting brain states using ordinal symbolic analysis
,”
Chaos
28
,
106307
(
2018
).
116.
I.
Kottlarz
,
S.
Berg
,
D.
Toscano-Tejeida
,
I.
Steinmann
,
M.
Bähr
,
S.
Luther
,
M.
Wilke
,
U.
Parlitz
, and
A.
Schlemmer
, “
Extracting robust biomarkers from multichannel EEG time series using nonlinear dimensionality reduction applied to ordinal pattern statistics and spectral quantities
,”
Front. Physiol.
11
,
614565
(
2021
).
117.
D.
Jordan
,
G.
Stockmanns
,
E. F.
Kochs
,
S.
Pilge
, and
G.
Schneider
, “
Electroencephalographic order pattern analysis for the separation of consciousness and unconsciousness: An analysis of approximate entropy, permutation entropy, recurrence rate, and phase coupling of order recurrence plots
,”
Anesthesiology
109
,
1014
1022
(
2008
).
118.
E.
Olofsen
,
J. W.
Sleigh
, and
A.
Dahan
, “
Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect
,”
Br. J. Anaesth.
101
,
810
821
(
2008
).
119.
D.
Li
,
X.
Li
,
Z.
Liang
,
L. J.
Voss
, and
J. W.
Sleigh
, “
Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia
,”
J. Neural Eng.
7
,
046010
(
2010
).
120.
S.
Sarasso
,
A. G.
Casali
,
S.
Casarotto
,
M.
Rosanova
,
C.
Sinigaglia
,
M.
Massimini
et al., “
Consciousness and complexity: A consilience of evidence
,”
Neurosci. Conscious.
7
,
1
24
(
2021
).
121.
S.
Berger
,
G.
Schneider
,
E. F.
Kochs
, and
D.
Jordan
, “
Permutation entropy: Too complex a measure for EEG time series?
,”
Entropy
19
,
692
(
2017
).
122.
A. M.
Yamashita Rios de Sousa
and
J.
Hlinka
, “
Assessing serial dependence in ordinal patterns processes using chi-squared tests with application to EEG data analysis
,”
Chaos
32
,
073126
(
2022
).
123.
H.
Osterhage
,
F.
Mormann
,
M.
Staniek
, and
K.
Lehnertz
, “
Measuring synchronization in the epileptic brain: A comparison of different approaches
,”
Int. J. Bifurcation Chaos
17
,
3539
3544
(
2007
).
124.
K.
Lehnertz
and
H.
Dickten
, “
Assessing directionality and strength of coupling through symbolic analysis: An application to epilepsy patients
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
373
,
20140094
(
2015
).
125.
L.
Kuhlmann
,
K.
Lehnertz
,
M. P.
Richardson
,
B.
Schelter
, and
H. P.
Zaveri
, “
Seizure prediction—Ready for a new era
,”
Nat. Rev. Neurol.
14
,
618
630
(
2018
).
126.
F.
Zubler
,
C.
Koenig
,
A.
Steimer
,
S. M.
Jakob
,
K. A.
Schindler
, and
H.
Gast
, “
Prognostic and diagnostic value of EEG signal coupling measures in coma
,”
Clin. Neurophysiol.
127
,
2942
2952
(
2016
).
127.
F.
Zubler
,
A.
Seiler
,
T.
Horvath
,
C.
Roth
,
S.
Miano
,
C.
Rummel
,
H.
Gast
,
L.
Nobili
,
K. A.
Schindler
, and
C. L.
Bassetti
, “
Stroke causes a transient imbalance of interhemispheric information flow in EEG during non-REM sleep
,”
Clin. Neurophysiol.
129
,
1418
1426
(
2018
).
128.
H.
Lee
,
Z.
Huang
,
X.
Liu
,
U.
Lee
, and
A. G.
Hudetz
, “
Topographic reconfiguration of local and shared information in anesthetic-induced unconsciousness
,”
Entropy
20
,
518
(
2018
).
129.
F.
Zubler
,
H.
Gast
,
E.
Abela
,
C.
Rummel
,
M.
Hauf
,
R.
Wiest
,
C.
Pollo
, and
K.
Schindler
, “
Detecting functional hubs of ictogenic networks
,”
Brain Topogr.
28
,
305
317
(
2015
).
130.
H.
Dickten
,
S.
Porz
,
C. E.
Elger
, and
K.
Lehnertz
, “
Weighted and directed interactions in evolving large-scale epileptic brain networks
,”
Sci. Rep.
6
,
34824
(
2016
).
131.
C.
Geier
,
S.
Bialonski
,
C. E.
Elger
, and
K.
Lehnertz
, “
How important is the seizure onset zone for seizure dynamics?
,”
Seizure
25
,
160
166
(
2015
).
132.
T.
Rings
,
R.
von Wrede
, and
K.
Lehnertz
, “
Precursors of seizures due to specific spatial-temporal modifications of evolving large-scale epileptic brain networks
,”
Sci. Rep.
9
,
10623
(
2019
).
133.
R.
Fruengel
,
T.
Bröhl
,
T.
Rings
, and
K.
Lehnertz
, “
Reconfiguration of human evolving large-scale epileptic brain networks prior to seizures: An evaluation with node centralities
,”
Sci. Rep.
10
,
21921
(
2020
).
134.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
369
(
2000
).
135.
M. G.
Rosenblum
and
A. S.
Pikovsky
, “
Detecting direction of coupling in interacting oscillators
,”
Phys. Rev. E
64
,
045202
(
2001
).
136.
Z.
Albo
,
G. V.
Di Prisco
,
Y.
Chen
,
G.
Rangarajan
,
W.
Truccolo
,
J.
Feng
,
R. P.
Vertes
, and
M.
Ding
, “
Is partial coherence a viable technique for identifying generators of neural oscillations?
,”
Biol. Cybern.
90
,
318
326
(
2004
).
137.
M.
Vinck
,
R.
Oostenveld
,
M.
van Wingerden
,
F.
Battaglia
, and
C. M. A.
Pennartz
, “
An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias
,”
NeuroImage
55
,
1548
1565
(
2011
).
138.
A. N.
Silchenko
,
I.
Adamchic
,
N.
Pawelczyk
,
C.
Hauptmann
,
M.
Maarouf
,
V.
Sturm
, and
P. A.
Tass
, “
Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems
,”
J. Neurosci. Methods
191
,
32
44
(
2010
).
139.
R.
Govindan
,
J.
Raethjen
,
K.
Arning
,
F.
Kopper
, and
G.
Deuschl
, “
Time delay and partial coherence analyses to identify cortical connectivities
,”
Biol. Cybern.
94
,
262
275
(
2006
).
140.
G.
Nolte
,
O.
Bai
,
L.
Wheaton
,
Z.
Mari
,
S.
Vorbach
, and
M.
Hallett
, “
Identifying true brain interaction from EEG data using the imaginary part of coherency
,”
Clin. Neurophysiol.
115
,
2292
2307
(
2004
).
141.
G.
Nolte
,
A.
Ziehe
,
V. V.
Nikulin
,
A.
Schlögl
,
N.
Krämer
,
T.
Brismar
, and
K.-R.
Müller
, “
Robustly estimating the flow direction of information in complex physical systems
,”
Phys. Rev. Lett.
100
,
234101
(
2008
).
142.
M.
Vinck
,
L.
Huurdeman
,
C. A.
Bosman
,
P.
Fries
,
F. P.
Battaglia
,
C. M.
Pennartz
, and
P. H.
Tiesinga
, “
How to detect the Granger-causal flow direction in the presence of additive noise?
,”
Neuroimage
108
,
301
318
(
2015
).
143.
J.
Wu
,
X.
Liu
, and
J.
Feng
, “
Detecting causality between different frequencies
,”
J. Neurosci. Methods
167
,
367
375
(
2008
).
144.
R.
Guevara
,
J. L. P.
Velazquez
,
V.
Nenadovic
,
R.
Wennberg
,
G.
Senjanovic
, and
L. G.
Dominguez
, “
Phase synchronization measurements using electroencephalographic recordings. What can we really say about neuronal synchrony?
,”
Neuroinformatics
3
,
301
314
(
2005
).
145.
H. P.
Zaveri
,
R. B.
Duckrow
, and
S. S.
Spencer
, “
On the use of bipolar montages for time-series analysis of intracranial electroencephalograms
,”
Clin. Neurophysiol.
117
,
2102
2108
(
2006
).
146.
S.
Hu
,
G.
Dai
,
G. A.
Worrell
,
Q.
Dai
, and
H.
Liang
, “
Causality analysis of neural connectivity: Critical examination of existing methods and advances of new methods
,”
IEEE Trans. Neural Netw.
22
,
829
844
(
2011
).
147.
S.
Porz
,
M.
Kiel
, and
K.
Lehnertz
, “
Can spurious indications for phase synchronization due to superimposed signals be avoided?
,”
Chaos
24
,
033112
(
2014
).
148.
A.
Sanz-Garcia
,
T.
Rings
, and
K.
Lehnertz
, “
Impact of type of intracranial EEG sensors on link strengths of evolving functional brain networks
,”
Physiol. Meas.
39
,
074003
(
2018
).
149.
A. C.
Snyder
,
D.
Issar
, and
M. A.
Smith
, “
What does scalp electroencephalogram coherence tell us about long-range cortical networks?
,”
Eur. J. Neurosci.
48
,
2466
2481
(
2018
).
150.
W. A.
Ríos-Herrera
,
P. V.
Olguín-Rodríguez
,
J. D.
Arzate-Mena
,
M.
Corsi-Cabrera
,
J.
Escalona
,
A.
Marín-García
,
J.
Ramos-Loyo
,
A. L.
Rivera
,
D.
Rivera-López
,
J. F.
Zapata-Berruecos
et al., “
The influence of EEG references on the analysis of spatio-temporal interrelation patterns
,”
Front. Neurosci.
13
,
941
(
2019
).
151.
E.
Florin
,
J.
Gross
,
J.
Pfeifer
,
G. R.
Fink
, and
L.
Timmermann
, “
Reliability of multivariate causality measures for neural data
,”
J. Neurosci. Methods
198
,
344
358
(
2011
).
152.
M.
Gerster
,
G.
Waterstraat
,
V.
Litvak
,
K.
Lehnertz
,
A.
Schnitzler
,
E.
Florin
,
G.
Curio
, and
V.
Nikulin
, “
Separating neural oscillations from aperiodic 1/f activity: Challenges and recommendations
,”
Neuroinformatics
20
,
991
1012
(
2022
).
153.
J.
Nawrath
,
M. C.
Romano
,
M.
Thiel
,
I. Z.
Kiss
,
M.
Wickramasinghe
,
J.
Timmer
,
J.
Kurths
, and
B.
Schelter
, “
Distinguishing direct from indirect interactions in oscillatory networks with multiple time scales
,”
Phys. Rev. Lett.
104
,
038701
(
2010
).
154.
W.
Mader
,
M.
Mader
,
J.
Timmer
,
M.
Thiel
, and
B.
Schelter
, “
Networks: On the relation of bi-and multivariate measures
,”
Sci. Rep.
5
,
10805
(
2015
).
155.
J.
Lu
,
R. V.
Donner
,
D.
Yin
,
S.
Guan
, and
Y.
Zou
, “
Partial event coincidence analysis for distinguishing direct and indirect coupling in functional network construction
,”
Chaos
32
,
063134
(
2022
).
156.
T.
Schreiber
and
A.
Schmitz
, “
Surrogate time series
,”
Physica D
142
,
346
382
(
2000
).
157.
G.
Ansmann
and
K.
Lehnertz
, “
Surrogate-assisted analysis of weighted functional brain networks
,”
J. Neurosci. Methods
208
,
165
172
(
2012
).
158.
K.
Stahn
and
K.
Lehnertz
, “
Surrogate-assisted identification of influences of network construction on evolving weighted functional networks
,”
Chaos
27
,
123106
(
2017
).
159.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
You do not currently have access to this content.