Increased levels of greenhouse gases in the atmosphere, especially carbon dioxide, are leading contributors to a significant increase in the global temperature, and the consequent global climatic changes are more noticeable in recent years than in the past. A persistent increased growth of such gases might lead to an irreversible transition or tipping of the Earth’s climatic system to a new dynamical state. A change of regimes in CO2 buildup being correlated to one in global climate patterns, predicting this tipping point becomes crucially important. We propose here an innovative conceptual model, which does just this. Using the idea of rate-induced bifurcations, we show that a sufficiently rapid change in the system parameters beyond a critical value tips the system over to a new dynamical state. Our model when applied to real-world data detects tipping points, enables calculation of tipping rates and predicts their future values, and identifies thresholds beyond which tipping occurs. The model well captures the growth in time of the total global atmospheric fossil-fuel CO2 concentrations, identifying regime shift changes through measurable parameters and enabling prediction of future trends based on past data. Our model shows two distinct routes to tipping. We predict that with the present trend of variation of atmospheric greenhouse gas concentrations, the Earth’s climatic system would move over to a new stable dynamical regime in the year 2022. We determine a limit of 10.62 GtC at the start of 2022 for global CO2 emissions in order to avoid this tipping.

1.
J.
Esper
,
U.
Buentgen
,
D. C.
Frank
,
D.
Nievergelt
, and
A.
Liebhold
, “
1200 years of regular outbreaks in alpine insects
,”
Proc. R. Soc. B
274
,
671
679
(
2007
).
2.
W.
Baltensweiler
, “
Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850
,”
Oecologia
94
,
62
66
(
1993
).
3.
S. V.
Iyengar
,
J.
Balakrishnan
, and
J.
Kurths
, “
Impact of climate change on larch budmoth cyclic outbreaks
,”
Sci. Rep.
6
,
27845
(
2016
).
4.
P. C.
Reid
et al., “Global impacts of the 1980s regime shift,”
Glob. Chang. Biol.
22
,
682–703
(
2016
).
5.
P.
Friedlingstein
et al., “Global carbon budget 2021,”
Earth System Science Data
(published online, 2021).
6.
N. A.
Phillips
, “
The general circulation of the atmosphere: A numerical experiment
,”
Q. J. R. Meteorol. Soc.
82
(
352
),
123
154
(
1956
).
7.
S.
Manabe
and
K.
Bryan
, “
Climate calculations with a combined ocean-atmosphere model
,”
J. Atmos. Sci.
26
,
786
789
(
1969
).
8.
C. R.
Mechoso
and
A.
Arakawa
, “
General circulation—Models
,” in
Encyclopedia of Atmospheric Sciences
, edited by James R. Holton (Academic Press, 2003), pp. 861–869, ISBN: 9780122270901.
9.
T. M.
Lenton
et al., “
Tipping elements in the Earth’s climate system
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
1786
1793
(
2008
).
10.
T. M.
Lenton
, “
Early warning of climate tipping points
,”
Nat. Clim. Change
1
,
201
209
(
2011
).
11.
P.
Ashwin
,
S.
Wieczorek
,
R.
Vitolo
, and
P.
Cox
, “
Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system
,”
Philos. Trans. R. Soc. A
370
,
1166
(
2012
).
12.
P.
Ritchie
and
J.
Sieber
, “
Early-warning indicators for rate-induced tipping
,”
Chaos
26
,
093116
(
2016
).
13.
C. G.
Perryman
, “How fast is too fast? Rate-induced bifurcations in multiple time-scale systems,” Ph.D. thesis (University of Exeter, 2015).
14.
N. J.
Mantua
and
S. R.
Hare
, “
The Pacific decadal oscillation
,”
J. Oceanogr.
58
,
35
44
(
2002
).
15.
M.
Newman
et al., “
The Pacific decadal oscillation, revisited
,”
J. Climate
29
,
4399
4426
(
2016
).
16.
F. P.
Chavez
,
J.
Ryan
,
S. E.
Lluch-Cota
, and
C. M.
Niquen
, “
From anchovies to sardines and back: Multidecadal change in the Pacific Ocean
,”
Science
299
,
217
(
2003
).
17.
P.
Lehodey
et al., “
Climate variability, fish, and fisheries
,”
J. Clim.
19
,
5009
5030
(
2006
).
18.
D. B.
Irons
et al., “
Fluctuations in circumpolar seabird populations linked to climate oscillations
,”
Glob. Change Biol.
14
,
1455
1463
(
2008
).
19.
A. S.
Sahana
,
S.
Ghosh
,
A.
Ganguly
, and
R.
Murtugudde
, “
Shift in Indian summer monsoon onset during 1976/1977
,”
Environ. Res. Lett.
10
,
054006
(
2015
).
20.
J. W.
Dippner
,
K.
Junker
, and
I.
Kroencke
, “
Biological regime shifts and changes in predictability
,”
Geophys. Res. Lett.
37
,
L24701
, https://doi.org/10.1029/2010GL045696 (
2010
).
21.
S.
Sun
et al., “
Regime shift in the decadal variability of the Indian Ocean subsurface temperature
,”
J. Mar. Syst.
216
,
103511
(
2021
).
22.
A. M.
Powell-Xu Powell
, Jr.
and
J.
Xu
, “
Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing
,”
Earth Syst. Dyn.
6
,
125
146
(
2015
).
23.
W.
Xin-Yu
,
J.
Zhe
, and
T.
Ben-Kui
, “
Responses of planetary waves to global warming: Implications from CMIP3 4×CO2 experiments
,”
Atmos. Ocean. Sci. Lett.
6
,
109
116
(
2013
).
24.
E.
Brocard
,
P.
Jeannet
,
M.
Begert
,
G.
Levrat
,
R.
Philipona
,
G.
Romanens
, and
S. C.
Scherrer
, “
Upper air temperature trends above Switzerland 1959–2011
,”
J. Geophys. Res: Atmos.
118
,
4303
, https://doi.org/10.1002/jgrd.50438 (
2013
).
25.
S. N.
Rodionov
, “
A sequential algorithm for testing climate regime shifts
,”
Geophys. Res. Lett.
31
,
L09204
, https://doi.org/10.1029/2004GL019448 (
2004
).
26.
S. N.
Rodionov
and
J. E.
Overland
, “
Application of a sequential regime shift detection method to the Bering Sea ecosystem
,”
ICES J. Mar. Sci.
62
,
328
332
(
2005
).
27.
S.
Khatiwala
,
T.
Tanhua
,
S. E.
Mikaloff Fletcher
,
M.
Gerber
,
S. C.
Doney
,
H. D.
Graven
,
N.
Gruber
,
G. A.
McKinley
,
A.
Murata
,
A. F.
Rios
, and
C. L.
Sabine
, “
Global ocean storage of anthropogenic carbon
,”
Biogeosciences
10
,
2169
2191
(
2013
).
28.
T.
DeVries
, “
The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era
,”
Global Biogeochem. Cycles
28
,
631
647
(
2014
).
You do not currently have access to this content.