Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.

1.
H. E.
Stanley
, “
Scaling, universality, and renormalization: Three pillars of modern critical phenomena
,”
Rev. Mod. Phys.
71
(
2
),
S358
S366
(
1999
).
2.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of “small-world” networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
3.
L. A. N.
Amaral
and
J. M.
Ottino
, “
Complex networks
,”
Eur. Phys. J. B
38
(
2
),
147
162
(
2004
).
4.
G.
Tononi
,
O.
Sporns
, and
G. M.
Edelman
, “
A measure for brain complexity: Relating functional segregation and integration in the nervous system
,”
Proc. Natl. Acad. Sci. U.S.A.
91
(
11
),
5033
5037
(
1994
).
5.
P. J.
Uhlhaas
and
W.
Singer
, “
Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology
,”
Neuron
52
(
1
),
155
168
(
2006
).
6.
C. J.
Stam
,
B. F.
Jones
,
G.
Nolte
,
M.
Breakspear
, and
P.
Scheltens
, “
Small-world networks and functional connectivity in Alzheimer’s disease
,”
Cereb. Cortex
17
(
1
),
92
99
(
2007
).
7.
M.
Maran
,
T.
Grent-‘t Jong
, and
P. J.
Uhlhaas
, “
Electrophysiological insights into connectivity anomalies in schizophrenia: A systematic review
,”
Neuropsychiatr. Electrophysiol.
2
(
1
),
6
(
2016
).
8.
A.
Hahamy
,
M.
Behrmann
, and
R.
Malach
, “
The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism spectrum disorder
,”
Nat. Neurosci.
18
(
2
),
302
309
(
2015
).
9.
C.
Hammond
,
H.
Bergman
, and
P.
Brown
, “
Pathological synchronization in Parkinson’s disease: Networks, models and treatments
,”
Trends Neurosci.
30
(
7
),
357
364
(
2007
).
10.
M. P.
Richardson
, “
Large scale brain models of epilepsy: Dynamics meets connectomics
,”
J. Neurol. Neurosurg. Psychiatry.
83
(
12
),
1238
1248
(
2012
).
11.
M. A.
Kramer
and
S. S.
Cash
, “
Epilepsy as a disorder of cortical network organization
,”
The Neuroscientist
18
(
4
),
360
372
(
2012
).
12.
M.
Zijlmans
,
W.
Zweiphenning
, and
N.
van Klink
, “
Changing concepts in presurgical assessment for epilepsy surgery
,”
Nat. Rev. Neurol.
15
(
10
),
594
606
(
2019
).
13.
A.
Bragin
,
C. L.
Wilson
, and
J.
Engel
, “
Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: A hypothesis
,”
Epilepsia
41 Suppl 6
(
8
),
S144
S152
(
2000
).
14.
L.
Dalic
and
M.
Cook
, “
Managing drug-resistant epilepsy: Challenges and solutions
,”
Neuropsychiatr. Dis. Treat.
12
,
2605
2616
(
2016
).
15.
P.
Salami
,
N.
Peled
,
J. K.
Nadalin
,
L. E.
Martinet
,
M. A.
Kramer
,
J. W.
Lee
, and
S. S.
Cash
, “
Seizure onset location shapes dynamics of initiation
,”
Clin. Neurophysiol.
131
(
8
),
1782
1797
(
2020
).
16.
R. B.
Yaffe
,
P.
Borger
,
P.
Megevand
,
D. M.
Groppe
,
M. A.
Kramer
,
C. J.
Chu
,
S.
Santaniello
,
C.
Meisel
,
A. D.
Mehta
, and
S. V.
Sarma
, “Physiology of functional and effective networks in epilepsy,”
Clin. Neurophys
.
126
(
2
),
227
236
(
2015
).
17.
V.
Jirsa
,
T.
Proix
,
D.
Perdikis
,
M.
Woodman
,
H.
Wang
,
J.
Gonzalez-Martinez
,
C.
Bernard
,
C.
Bénar
,
M.
Guye
,
P.
Chauvel
, and
F.
Bartolomei
, “
The virtual epileptic patient: Individualized whole-brain models of epilepsy spread
,”
NeuroImage
145
,
377
388
(
2017
).
18.
E.
Van Diessen
,
S. J. H.
Diederen
,
K. P. J.
Braun
,
F. E.
Jansen
, and
C. J.
Stam
, “
Functional and structural brain networks in epilepsy: What have we learned?
,”
Epilepsia
54
(
11
),
1855
1865
(
2013
).
19.
A.
Li
,
B.
Chennuri
,
S.
Subramanian
,
R.
Yaffe
,
S.
Gliske
,
W.
Stacey
,
R.
Norton
,
A.
Jordan
,
K. A.
Zaghloul
,
S. K.
Inati
,
S.
Agrawal
,
J. J.
Haagensen
,
J.
Hopp
,
C.
Atallah
,
E.
Johnson
,
N.
Crone
,
W. S.
Anderson
,
Z.
Fitzgerald
,
J.
Bulacio
,
J. T.
Gale
,
S. V.
Sarma
, and
J.
Gonzalez-Martinez
, “
Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy
,”
Netw. Neurosci.
2
(
2
),
218
240
(
2018
).
20.
W.
Stacey
,
M.
Kramer
,
K.
Gunnarsdottir
,
J.
Gonzalez-Martinez
,
K.
Zaghloul
,
S.
Inati
,
S.
Sarma
,
J.
Stiso
,
A. N.
Khambhati
,
D. S.
Bassett
,
R. J.
Smith
,
V. B.
Liu
,
B. A.
Lopour
, and
R.
Staba
, “
Emerging roles of network analysis for epilepsy
,”
Epilepsy Res.
159
,
106255
(
2020
).
21.
V. R.
Carvalho
,
M. F. D.
Moraes
,
S. S.
Cash
, and
E. M. A. M.
Mendes
, “
Active probing to highlight approaching transitions to ictal states in coupled neural mass models
,”
PLoS Comput. Biol.
17
(
1
),
e1008377
(
2021
).
22.
D. R.
Freestone
,
P. J.
Karoly
,
A. D.
Peterson
,
L.
Kuhlmann
,
A.
Lai
,
F.
Goodarzy
, and
M. J.
Cook
, “
Seizure prediction: Science fiction or soon to become reality?
,”
Curr. Neurol. Neurosci. Rep.
15
(
11
),
73
(
2015
).
23.
F.
Mormann
,
R. G.
Andrzejak
,
C. E.
Elger
, and
K.
Lehnertz
, “
Seizure prediction: The long and winding road
,”
Brain
130
(
2
),
314
333
(
2007
).
24.
L. D.
Iasemidis
, “
Epileptic seizure prediction and control
,”
IEEE Trans. Bio-Med. Eng.
50
(
5
),
549
558
(
2003
).
25.
F.
Mina
,
P.
Benquet
,
A.
Pasnicu
,
A.
Biraben
, and
F.
Wendling
, “
Modulation of epileptic activity by deep brain stimulation: A model-based study of frequency-dependent effects
,”
Front. Comput. Neurosci.
7
,
1
16
(
2013
).
26.
F.
Bartolomei
,
S.
Lagarde
,
F.
Wendling
,
A.
McGonigal
,
V.
Jirsa
,
M.
Guye
, and
C.
Bénar
, “
Defining epileptogenic networks: Contribution of SEEG and signal analysis
,”
Epilepsia
58
(
7
),
1131
1147
(
2017
).
27.
M. F. D.
Moraes
,
D.
de Castro Medeiros
,
F. A. G.
Mourao
,
S. A. V.
Cancado
, and
V. R.
Cota
, “
Epilepsy as a dynamical system, a most needed paradigm shift in epileptology
,”
Epilepsy Behav.
121
,
106838
(
2021
).
28.
L.
Kuhlmann
,
D. B.
Grayden
,
F.
Wendling
, and
S. J.
Schiff
, “
Role of multiple-scale modeling of epilepsy in seizure forecasting
,”
J. Clin. Neurophysiol.
32
(
3
),
220
226
(
2015
).
29.
J. C.
Yang
,
A. C.
Paulk
,
P.
Salami
,
S. H.
Lee
,
M.
Ganji
,
D. J.
Soper
,
D.
Cleary
,
M.
Simon
,
D.
Maus
,
J. W.
Lee
,
B. V.
Nahed
,
P. S.
Jones
,
D. P.
Cahill
,
G. R.
Cosgrove
,
C. J.
Chu
,
Z.
Williams
,
E.
Halgren
,
S.
Dayeh
, and
S. S.
Cash
, “
Microscale dynamics of electrophysiological markers of epilepsy
,”
Clin. Neurophysiol.
132
(
11
),
2916
2931
(
2021
).
30.
C.
Lainscsek
,
S. S.
Cash
,
T. J.
Sejnowski
, and
J.
Kurths
, “
Dynamical ergodicity DDA reveals causal structure in time series
,”
Chaos
31
(
10
),
103108
(
2021
).
31.
C.
Lainscsek
,
C. E.
Gonzalez
,
A. L.
Sampson
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Causality detection in cortical seizure dynamics using cross-dynamical delay differential analysis
,”
Chaos
29
(
10
),
101103
(
2019a
).
32.
C.
Lainscsek
,
N.
Rungratsameetaweemana
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Cortical chimera states predict epileptic seizures
,”
Chaos
29
(
12
),
121106
(
2019b
).
33.
C.
Lainscsek
and
T.
Sejnowski
, “
Delay differential analysis of time series
,”
Neural Comput.
27
(
3
),
594
614
(
2015
).
34.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
(
1980
).
35.
T.
Sauer
,
J. A.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
(
1991
).
36.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics Vol. 898, edited by D. A. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
37.
M.
Kremliovsky
and
J.
Kadtke
, “
Using delay differential equations as dynamical classifiers
,”
AIP Conf. Proc.
411
,
57
(
1997
).
38.
C.
Lainscsek
,
J.
Weyhenmeyer
,
M.
Hernandez
,
H.
Poizner
, and
T.
Sejnowski
, “
Non-linear dynamical classification of short time series of the Rössler system in high noise regimes
,”
Front. Neurol.
4
,
182
(
2013
).
39.
M.
Planck
, “
Über irreversible Strahlungsvorgänge
,”
Ann. Phys.
306
(
1
),
69
122
(
1900
).
40.
A.
Das
,
D.
Sexton
,
C.
Lainscsek
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Characterizing brain connectivity from human electrocorticography recordings with unobserved inputs during epileptic seizures
,”
Neural Comput.
31
(
7
),
1271
1326
(
2019
).
41.
C.
Lainscsek
,
A. L.
Sampson
,
R.
Kim
,
M. L.
Thomas
,
K.
Man
,
X.
Lainscsek
,
N. R.
Swerdlow
,
D. L.
Braff
,
T. J.
Sejnowski
,
G. A.
Light
, and
The COGS Investigators
, “
Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
9
),
3847
3852
(
2019c
).
42.
C.
Lainscsek
,
J.
Weyhenmeyer
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Delay differential analysis of seizures in multichannel electrocorticography data
,”
Neural Comput.
29
(
12
),
3181
3218
(
2017
).
43.
A. L.
Sampson
,
C.
Lainscsek
,
C. E.
Gonzalez
,
I.
Ulbert
,
O.
Devinsky
,
D.
Fabó
,
J. R.
Madsen
,
E.
Halgren
,
S. S.
Cash
, and
T. J.
Sejnowski
, “
Delay differential analysis for dynamical sleep spindle detection
,”
J. Neurosci. Methods
316
,
12
21
(
2019
).
44.
C.
Lainscsek
,
A. L.
Sampson
,
R.
Kim
,
M. L.
Thomas
,
K.
Man
,
X.
Lainscsek
,
N. R.
Swerdlow
,
D. L.
Braff
,
T. J.
Sejnowski
, and
G. A.
Light
, and
The COGS Investigators
, “
Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
9
),
3847
3852
(
2019d
).
45.
W.
Press
,
B.
Flannery
,
S.
Teukolsky
, and
W.
Vetterling
,
Numerical Recipes in C
(
Cambridge University Press
,
New York, NY
,
1990
).
46.
E.
Miletics
and
G.
Molnárka
, “
Taylor series method with numerical derivatives for initial value problems
,”
J. Comp. Methods Sci. Eng.
4
(
1,2
),
105
114
(
2004
).
47.
E.
Miletics
and
G.
Molnárka
, “
Implicit extension of Taylor series method with numerical derivatives for initial value problems
,”
Comput. Math. Appl.
50
(
7
),
1167
1177
(
2005
).
48.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
(
1976
).
49.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
50.
M.
Palus
and
M.
Vejmelka
, “
Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections
,”
Phys. Rev. E
75
,
056211
(
2007
).
51.
O.
Felsenstein
,
N.
Peled
,
E.
Hahn
,
A. P.
Rockhill
,
L.
Folsom
,
T.
Gholipour
,
K.
Macadams
,
N.
Rozengard
,
A. C.
Paulk
,
D.
Dougherty
,
S. S.
Cash
,
A. S.
Widge
,
M.
Hämäläinen
, and
S.
Stufflebeam
, “Multi-modal neuroimaging analysis and visualization tool (MMVT),” arXiv:1912.10079 (2019), Vol. 1(617), pp. 1–29.
52.
D. J.
Soper
,
D.
Reich
,
A.
Ross
,
P.
Salami
,
S. S.
Cash
,
I.
Basu
,
N.
Peled
, and
A. C.
Paulk
, “
Modular pipeline for reconstruction and localization of implanted intracranial ECoG and sEEG electrodes
,”
PLoS One
18
(
7
),
e0287921
(
2023
).
You do not currently have access to this content.