We study collision avoidance resulting from unit-speed constraint and singular communication weight in a thermo-mechanical Cucker–Smale (TCS) flocking ensemble moving in a Euclidean space. The TCS model governs the flocking dynamics of the CS particles in the presence of a self-consistent temperature field. The issue of collision avoidance has been addressed in the realistic modeling of collective particle models, and it has been investigated in the CS and TCS models without unit-speed constraint. In this paper, we take one further step by examining how unit-speed constraint and singular communication weights can result in collision avoidance between particles. For this, we introduce a sufficient framework to ensure collision avoidance in terms of system parameters and initial data.

1.
J.
Buck
and
E.
Buck
, “
Biology of synchronous flashing of fireflies
,”
Nature
211
,
562
564
(
1966
).
2.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
3.
C. M.
Topaz
and
A. L.
Bertozzi
, “
Swarming patterns in a two-dimensional kinematic model for biological groups
,”
SIAM J. Appl. Math.
65
,
152
174
(
2004
).
4.
F.
Cucker
and
S.
Smale
, “
Emergent behavior in flocks
,”
IEEE Trans. Autom. Control
52
,
852
862
(
2007
).
5.
J. A.
Acebron
,
L. L.
Bonilla
,
C. J. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
6.
G.
Albi
,
N.
Bellomo
,
L.
Fermo
,
S.-Y.
Ha
,
L.
Pareschi
,
D.
Poyato
, and
J.
Soler
, “
Vehicular traffic, crowds, and swarms. On the kinetic theory approach towards research perspective
,”
Math. Models Methods Appl. Sci.
29
,
1901
2005
(
2019
).
7.
Y.-P.
Choi
,
S.-Y.
Ha
, and
Z.
Li
, “Emergent dynamics of the Cucker-Smale flocking model and its variants,” in Active Particles Vol. I Theory, Models, Applications, Modeling and Simulation in Science and Technology, edited by N. Bellomo, P. Degond, and E. Tadmor (Birkhauser, Springer, 2017).
8.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
9.
T.
Vicsek
and
A.
Zefeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
10.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
New York
,
1980
).
11.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Schochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
12.
J.
Byeon
,
S.-Y.
Ha
, and
J.
Kim
, “
Asymptotic flocking dynamics of a relativistic Cucker–Smale flock under singular communications
,”
J. Math. Phys.
63
,
012702
(
2022
).
13.
J. A.
Carrillo
,
M.
Fornasier
,
J.
Rosado
, and
G.
Toscani
, “
Asymptotic flocking dynamics for the kinetic Cucker-Smale model
,”
SIAM J. Math. Anal.
42
,
218
236
(
2010
).
14.
J.
Cho
,
S.-Y.
Ha
,
F.
Huang
,
C.
Jin
, and
D.
Ko
, “
Emergence of bi-cluster flocking for agent-based models with unit-speed constraint
,”
Anal. Appl. (Singap.)
14
,
39
73
(
2016
).
15.
Y.-P.
Choi
and
J.
Haskovec
, “
Cucker-Smale model with normalized communication weights and time delay
,”
Kinet. Rel. Models
10
,
1011
1033
(
2017
).
16.
S.-Y.
Ha
,
D.
Ko
, and
Y.
Zhang
, “
Remarks on the coupling strength for the Cucker-Smale with unit speed
,”
Discrete Contin. Dyn. Syst.
38
,
2763
2793
(
2018
).
17.
S.-Y.
Ha
and
J.-G.
Liu
, “
A simple proof of Cucker-Smale flocking dynamics and mean-field limit
,”
Commun. Math. Sci.
7
,
297
325
(
2009
).
18.
S.-Y.
Ha
and
E.
Tadmor
, “
From particle to kinetic and hydrodynamic description of flocking
,”
Kinet. Rel. Models
1
,
415
435
(
2008
).
19.
E. W.
Justh
and
P. S.
Krishnaprasad
, “
Equilibria and steering laws for planar formations
,”
Syst. Control Lett.
52
,
25
38
(
2004
).
20.
S.-Y.
Ha
,
J.
Kim
, and
T.
Ruggeri
, “
Emergent behaviors of thermodynamic Cucker–Smale particles
,”
SIAM J. Math. Anal.
50
,
3092
3121
(
2018
).
21.
S.-Y.
Ha
and
T.
Ruggeri
, “
Emergent dynamics of a thermodynamically consistent particle model
,”
Arch. Ration. Mech. Anal.
223
,
1397
1425
(
2017
).
22.
P.
Degond
and
S.
Motsch
, “
Large scale dynamics of the persistent turning walker model of fish behavior
,”
J. Stat. Phys.
131
,
989
1021
(
2008
).
23.
P.
Degond
and
S.
Motsch
, “
Continuum limit of self-driven particles with orientation interaction
,”
Math. Models Methods Appl. Sci.
18
(
supp01
),
1193
1215
(
2008
).
24.
R. C.
Fetecau
and
R.
Eftimie
, “
An investigation of a nonlocal hyperbolic model for self-organization of biological groups
,”
J. Math. Biol.
61
,
545
579
(
2010
).
25.
E. W.
Justh
and
P. S.
Krishnaprasad
, “Steering laws and continuum models for planar formations,” in Proceedings of the 42nd IEEE Conference on Decision and Control (IEEE, 2003).
26.
E. W.
Justh
and
P. S.
Krishnaprasad
, “A simple control law for UAV formation flying,” Technical Report 38, 2002.
27.
N. E.
Leonard
,
D. A.
Paley
,
F.
Lekien
,
R.
Sepulchre
,
D. M.
Fratantoni
, and
R. E.
Davis
, “
Collective motion, sensor networks, and ocean sampling
,”
Proc. IEEE
95
,
48
74
(
2007
).
28.
Y.
Kuramoto
, “
International symposium on mathematical problems in mathematical physics
,”
Lect. Notes Phys.
30
,
420
(
1975
).
29.
S.-Y.
Ha
,
E.
Jeong
, and
M. J.
Kang
, “
Emergent behaviour of a generalized Viscek-type flocking model
,”
Nonlinearity
23
,
3139
(
2010
).
30.
S.-H.
Choi
and
S.-Y.
Ha
, “
Interplay of the unit-speed constraint and time-delay in Cucker-Smale flocking
,”
J. Math. Phys.
59
,
082701
(
2018
).
31.
S.-H.
Choi
and
S.-Y.
Ha
, “
Emergence of flocking for a multi-agent system moving with constant speed
,”
Commun. Math. Sci.
14
,
953
972
(
2016
).
32.
F.
Ginelli
, “
The physics of the Vicsek model
,”
Eur. Phys. J. Spec. Top.
225
,
2099
2117
(
2016
).
33.
H.
Ahn
, “
Emergent behaviors of thermodynamic Cucker–Smale ensemble with a unit-speed constraint
,”
Discrete Contin. Dyn. Syst. B
28
,
4800
4825
(
2023
).
34.
Y.-P.
Choi
,
S.-Y.
Ha
, and
J.
Kim
, “
Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication
,”
Networks Heterogen. Media
13
,
379
407
(
2018
).
35.
H.
Ahn
, “
Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels
,”
Networks Heterogen. Media
17
,
753
782
(
2022
).
36.
H.
Ahn
and
W.
Shim
, “Interplay of a unit-speed constraint and time-delay in the thermomechanical Cucker-Smale model” (submitted).
37.
J. A.
Carrillo
,
Y. -P.
Choi
,
P. B.
Mucha
, and
J.
Peszek
, “
Sharp conditions to avoid collisions in singular Cucker-Smale interactions
,”
Nonlinear Anal. Real World Appl.
37
,
317
328
(
2017
).
38.
F.
Cucker
and
J.-G.
Dong
, “
Avoiding collisions in flocks
,”
IEEE Trans. Autom. Control
55
,
1238
1243
(
2010
).
39.
F.
Cucker
and
J.-G.
Dong
, “
A general collision-avoiding flocking framework
,”
IEEE Trans. Autom. Control
56
,
1124
1129
(
2011
).
40.
F.
Cucker
and
J.-G.
Dong
, “
A conditional, collision-avoiding, model for swarming
,”
Discrete Contin. Dyn. Syst.
34
,
1009
1020
(
2014
).
41.
Y.-P.
Choi
,
D.
Kalsie
,
J.
Peszek
, and
A.
Peters
, “
A collisionless singular Cucker-Smale model with decentralized formation control
,”
SIAM J. Appl. Dyn. Syst.
18
,
1954
1981
(
2019
).
42.
P. B.
Mucha
and
J.
Peszek
, “
The Cucker-Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness
,”
Arch. Ration. Mech. Anal.
227
,
273
308
(
2018
).
43.
J.
Peszek
, “
Discrete Cucker-Smale flocking model with a weakly singular kernel
,”
SIAM J. Math. Anal.
47
,
3671
3686
(
2015
).
44.
J.
Toner
and
Y.
Tu
, “
Flocks, herds, and schools: A quantitative theory of flocking
,”
Phys. Rev. E
58
,
4828
4858
(
1998
).
You do not currently have access to this content.