In this work, we study the dynamics of a susceptible-exposed-infectious-recovered-susceptible epidemic model with a periodic time-dependent transmission rate. Emphasizing the influence of the seasonality frequency on the system dynamics, we analyze the largest Lyapunov exponent along parameter planes finding large chaotic regions. Furthermore, in some ranges, there are shrimp-like periodic structures. We highlight the system multistability, identifying the coexistence of periodic orbits for the same parameter values, with the infections maximum distinguishing by up one order of magnitude, depending only on the initial conditions. In this case, the basins of attraction have self-similarity. Parametric configurations, for which both periodic and non-periodic orbits occur, cover 13.20% of the evaluated range. We also identified the coexistence of periodic and chaotic attractors with different maxima of infectious cases, where the periodic scenario peak reaches approximately 50% higher than the chaotic one.

1.
M. J.
Keeling
and
P.
Rohani
,
Modeling Infectious Diseases in Humans and Animals
, 1st ed. (
Princeton University Press
,
Princeton, NJ
,
2008
).
2.
S.
Altizer
,
A.
Dobson
,
P.
Hosseini
,
P.
Hudson
,
M.
Pascual
, and
P.
Rohani
, “
Seasonality and the dynamics of infectious diseases
,”
Ecol. Lett.
9
,
467
484
(
2006
).
3.
N. C.
Grassly
and
C.
Fraser
, “
Seasonal infectious disease epidemiology
,”
Proc. R. Soc. B
273
,
2541
2550
(
2006
).
4.
D.
Greenhalgh
and
I. A.
Moneim
, “
SIRS epidemic model and simulations using different types of seasonal contact rate
,”
Syst. Anal. Model. Simul.
43
,
573
600
(
2003
).
5.
B. T.
Grenfell
,
B. M.
Bolker
, and
A.
Kleczkowski
, “
Seasonality and extinction in chaotic metapopulations
,”
Proc. R. Soc. B
259
,
97
103
(
1995
).
6.
J. L.
Aron
and
I. B.
Schwartz
, “
Seasonality and period-doubling bifurcations in an epidemic model
,”
J. Theor. Biol.
110
,
665
679
(
1984
).
7.
I. B.
Schwartz
and
H. L.
Smith
, “
Infinite subharmonic bifurcation in an SEIR epidemic model
,”
J. Math. Biol.
18
,
233
253
(
1983
).
8.
Y. A.
Kuznetsov
and
C.
Piccardi
, “
Bifurcation analysis of periodic SEIR and SIR epidemic models
,”
J. Math. Biol.
32
,
109
121
(
1994
).
9.
L. F.
Olsen
and
W. M.
Schaffer
, “
Chaos versus noisy periodicity: Alternative hypotheses for childhood epidemics
,”
Science
249
,
499
504
(
1990
).
10.
M.
Aguiar
,
S.
Ballesteros
,
B. W.
Kooi
, and
N.
Stollenwerk
, “
The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis
,”
J. Theor. Biol.
289
,
181
196
(
2011
).
11.
W. P.
London
and
J. A.
Yorke
, “
Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates
,”
Am. J. Epidemiol.
98
,
453
468
(
1973
).
12.
M. J.
Keeling
,
P.
Rohani
, and
B. T.
Grenfell
, “
Seasonally forced disease dynamics explored as switching between attractors
,”
Phys. D
148
,
317
335
(
2001
).
13.
M.
Aguiar
,
N.
Stollenwerk
, and
B. W.
Kooi
, “
Torus bifurcations, isolas and chaotic attractors in a simple dengue fever model with ADE and temporary cross immunity
,”
Int. J. Comput. Math.
86
,
1867
1877
(
2009
).
14.
G.
Tanaka
and
K.
Aihara
, “
Effects of seasonal variation patterns on recurrent outbreaks in epidemic models
,”
J. Theor. Biol.
317
,
87
95
(
2013
).
15.
O. N.
Bjørnstad
,
Epidemics: Models and Data Using R
, 1st ed. (
Springer
,
Cham
,
2018
), pp. XIII, 312.
16.
D. A.
Rand
and
H. B.
Wilson
, “
Chaotic stochasticity: A ubiquitous source of unpredictability in epidemics
,”
Proc. R. Soc. B
246
,
179
184
(
1991
).
17.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans: Dynamics and Control
(
Oxford University Press
,
1991
).
18.
E. C.
Gabrick
,
P. R.
Protachevicz
,
A. M.
Batista
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
J. D.
Szezech
, Jr.
,
M.
Mugnaine
, and
I. L.
Caldas
, “
Effect of two vaccine doses in the SEIR epidemic model using a stochastic cellular automaton
,”
Phys. A
597
,
127258
(
2022
).
19.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,”
Proc. R. Soc. London, Ser. A
115
,
700
721
(
1927
).
20.
D. J. D.
Earn
,
P.
Rohani
,
B. M.
Bolker
, and
B. T.
Grenfell
, “
A simple model for complex dynamical transitions in epidemics
,”
Science
287
,
667
670
(
2000
).
21.
M.
Aguiar
,
B.
Kooi
, and
N.
Stollenwerk
, “
Epidemiology of dengue fever: A model with temporary cross-immunity and possible secondary infection shows bifurcations and chaotic behaviour in wide parameter regions
,”
Math. Model. Nat. Phenom.
3
,
48
70
(
2008
).
22.
S. H.
Ho
,
D.
He
, and
R.
Eftimie
, “
Mathematical models of transmission dynamics and vaccine strategies in Hong Kong during the 2017–2018 winter influenza season
,”
J. Theor. Biol.
476
,
74
94
(
2019
).
23.
M.
Amaku
,
D. T.
Covas
,
F. A. B.
Coutinho
,
R. S. A.
Neto
,
C.
Struchiner
,
A.
Wilder-Smith
, and
E.
Massad
, “
Modelling the test, trace and quarantine strategy to control the COVID-19 epidemic in the state of São Paulo, Brazil
,”
Infect. Dis. Model.
6
,
46
55
(
2021
).
24.
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F. O.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
,
041102
(
2020
).
25.
E. L.
Brugnago
,
R. M.
da Silva
,
C.
Manchein
, and
M. W.
Beim
, “
How relevant is the decision of containment measures against COVID-19 applied ahead of time?
,”
Chaos, Solitons Fractals
140
,
110164
(
2020
).
26.
R.
Amelia
,
N.
Anggriani
,
A. K.
Supriatna
, and
N.
Istifadah
, “
Mathematical model for analyzing the dynamics of tungro virus disease in rice: A systematic literature review
,”
Mathematics
10
,
2944
(
2022
).
27.
N.
Dalal
,
D.
Greenhalgh
, and
X.
Mao
, “
A stochastic model for internal HIV dynamics
,”
J. Math. Anal. Appl.
341
,
1084
1101
(
2008
).
28.
J.
Dushoff
,
J. B.
Plotkin
,
S. A.
Levin
, and
D. J. D.
Earn
, “
Dynamical resonance can account for seasonality of influenza epidemics
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
16915
16916
(
2004
).
29.
J. A.
Galvis
,
C. A.
Corzo
,
J. M.
Prada
, and
G.
Machado
, “
Modeling between-farm transmission dynamics of porcine epidemic diarrhea virus: Characterizing the dominant transmission routes
,”
Prev. Vet. Med.
208
,
105759
(
2022
).
30.
M.
Mugnaine
,
E. C.
Gabrick
,
P. R.
Protachevicz
,
K. C.
Iarosz
,
S. L.
de Souza
,
A. C.
Almeida
,
A. M.
Batista
,
I. L.
Caldas
,
J. D.
Szezech
, Jr.
, and
R. L.
Viana
, “
Control attenuation and temporary immunity in a cellular automata SEIR epidemic model
,”
Chaos, Solitons Fractals
155
,
111784
(
2022
).
31.
I.
Cooper
,
A.
Mondal
, and
C. G.
Antonopoulos
, “
A SIR model assumption for the spread of COVID-19 in different communities
,”
Chaos, Solitons Fractals
139
,
110057
(
2020
).
32.
S. L.
de Souza
,
A. M.
Batista
,
I. L.
Caldas
,
K. C.
Iarosz
, and
J. D.
Szezech
, Jr.
, “
Dynamics of epidemics: Impact of easing restrictions and control of infection spread
,”
Chaos, Solitons Fractals
142
,
110431
(
2021
).
33.
A. M.
Batista
,
S. L. T.
de Souza
,
K. C.
Larosz
,
A. C. L.
Almeida
,
J. D.
Szezech
, Jr.
,
E. C.
Gabrick
,
M.
Mugnaine
,
G. L.
dos Santos
, and
I. L.
Caldas
, “
Simulation of deterministic compartmental models for infectious diseases dynamics
,”
Rev. Bras. Ensino Fis.
43
,
e20210171
(
2021
).
34.
S.
Bianco
,
L. B.
Shaw
, and
I. B.
Schwartz
, “
Epidemics with multistrain interactions: The interplay between cross immunity and antibody-dependent enhancement
,”
Chaos
19
,
043123
(
2009
).
35.
N.
Yi
,
Q.
Zhang
,
K. M. D.
Yang
, and
Q.
Li
, “
Analysis and control of an SEIR epidemic system with nonlinear transmission rate
,”
Math. Comput. Modell.
50
,
1498
1513
(
2009
).
36.
N.
Stollenwerk
,
S.
Spaziani
,
J.
Mar
,
I. E.
Arrizabalaga
,
D.
Knopoff
,
N.
Cusimano
,
V.
Anam
,
A.
Shrivastava
, and
M.
Aguiar
, “
Seasonally forced SIR systems applied to respiratory infectious diseases, bifurcations, and chaos
,”
Comput. Math. Methods
2022
,
3556043
(
2022
).
37.
S.
Bilal
,
B. K.
Singh
,
A.
Prasad
, and
E.
Michael
, “
Effects of quasiperiodic forcing in epidemic models
,”
Chaos
26
,
093115
(
2016
).
38.
M.
Kamo
and
A.
Sasaki
, “
The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model
,”
Phys. D
165
,
228
241
(
2002
).
39.
E. C.
Gabrick
,
E.
Sayari
,
P. R.
Protachevicz
,
J. D.
Szezech
, Jr.
,
K. C.
Iarosz
,
S. L. T.
de Souza
,
A. C. L.
Almeida
,
R. L.
Viana
,
I. L.
Caldas
, and
A. M.
Batista
, “
Unpredictability in seasonal infectious diseases spread
,”
Chaos, Solitons Fractals
166
,
113001
(
2023
).
40.
E. S.
Medeiros
,
I. L.
Caldas
,
M. S.
Baptista
, and
U.
Feudel
, “
Trapping phenomenon attenuates the consequences of tipping points for limit cycles
,”
Sci. Rep.
7
,
42351
(
2017
).
41.
J.
Ma
and
Z.
Ma
, “
Epidemic threshold conditions for seasonally forced SEIR models
,”
Math. Biosci. Eng.
3
,
161
(
2006
).
42.
T.
Tél
and
M.
Gruiz
,
Chaotic Dynamics: An Introduction Based on Classical Mechanics
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2006
).
43.
V.
dos Santos
,
J. D.
Szezech
, Jr.
,
M. S.
Baptista
,
A. M.
Batista
, and
I. L.
Caldas
, “
Unstable dimension variability structure in the parameter space of coupled Hénon maps
,”
Appl. Math. Comput.
286
,
23
28
(
2016
).
44.
U.
Feudel
,
C.
Grebogi
,
B. R.
Hunt
, and
J. A.
Yorke
, “
Map with more than 100 coexisting low-period periodic attractors
,”
Phys. Rev. E
54
,
71
81
(
1996
).
45.
U.
Feudel
and
C.
Grebogi
, “
Multistability and the control of complexity
,”
Chaos
7
,
597
604
(
1997
).
46.
U.
Feudel
, “
Complex dynamics in multistable systems
,”
Int. J. Bifurcation Chaos
18
,
1607
1626
(
2008
).
47.
C.
Grebogi
,
S. W.
McDonald
,
E.
Ott
, and
J. A.
Yorke
, “
Final state sensitivy: An obstruction to predictability
,”
Phys. Lett. A
99
,
415
418
(
1983
).
48.
K.
Rock
,
S.
Brand
,
J.
Moir
, and
M. J.
Keeling
, “
Dynamics of infectious diseases
,”
Rep. Prog. Phys.
77
,
026602
(
2014
).
49.
O. N.
Bjørnstad
,
K.
Shea
,
M.
Krzywinski
, and
N.
Altman
, “
The SEIRS model for infectious disease dynamics
,”
Nat. Methods
17
,
557
558
(
2020
).
50.
D.
Greenhalgh
, “
Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity
,”
Math. Comput. Modell.
25
,
85
107
(
1997
).
51.
M. Y.
Li
,
J. R.
Graef
,
L.
Wang
, and
J.
Karsai
, “
Global dynamics of a SEIR model with varying total population size
,”
Math. Biosci.
160
,
191
213
(
1999
).
52.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
53.
I.
Shimada
and
T.
Nagashima
, “
A numerical approach to ergodic problem of dissipative dynamical systems
,”
Prog. Theor. Phys.
61
,
1605
1616
(
1979
).
54.
Z.
Bai
and
Y.
Zhou
, “
Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate
,”
Nonlinear Anal. Real World Appl.
13
,
1060
1068
(
2012
).
55.
A.
Cori
,
A. J.
Valleron
,
F.
Carrat
,
G.
Scalia Tomba
,
G.
Thomas
, and
P. Y.
Boëlle
, “
Estimating influenza latency and infectious period durations using viral excretion data
,”
Epidemics
4
,
132
138
(
2012
).
56.
J.
Lessler
,
N. G.
Reich
,
R.
Brookmeyer
,
T. M.
Perl
,
K. E.
Nelson
, and
D. A. T.
Cummings
, “
Incubation periods of acute respiratory viral infections: A systematic review
,”
Lancet Infect. Dis.
9
,
291
300
(
2009
).
57.
P. E.
Sartwell
, “
The distribution of incubation periods of infectious disease
,”
Am. J. Epidemiol.
51
,
310
318
(
1950
).
58.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Phys. D
16
,
285
317
(
1985
).
59.
J. A. C.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
60.
V.
Castro
,
M.
Monti
,
W. B.
Pardo
,
J. A.
Walkenstein
, and
E.
Rosa
, Jr.
, “
Characterization of the Rössler system in parameter space
,”
Int. J. Bifurcation Chaos
17
,
965
973
(
2007
).
61.
R.
Barrio
,
F.
Blesa
,
S.
Serrano
, and
A.
Shilnikov
, “
Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci
,”
Phys. Rev. E
84
,
035201
(
2011
).
62.
P. C.
Rech
, “
How to embed shrimps in parameter planes of the Lorenz system
,”
Phys. Scr.
92
,
045201
(
2017
).
63.
J. A. C.
Gallas
, “
Dissecting shrimps: Results for some one-dimensional physical models
,”
Phys. A
202
,
196
223
(
1994
).
64.
R.
Varga
,
K.
Klapcsik
, and
F.
Heged dus
, “
Route to shrimps: Dissipation driven formation of shrimp-shaped domains
,”
Chaos, Solitons Fractals
130
,
109424
(
2020
).
65.
J. A. C.
Gallas
, “
Structure of the parameter space of a ring cavity
,”
Appl. Phys. B
60
,
279
(
1995
).
66.
A.
Jones
and
N.
Strigul
, “
Is spread of COVID-19 a chaotic epidemic?
,”
Chaos, Solitons Fractals
142
,
110376
(
2021
).
You do not currently have access to this content.