Chaos is an important dynamic feature, which generally occurs in deterministic and stochastic nonlinear systems and is an inherent characteristic that is ubiquitous. Many difficulties have been solved and new research perspectives have been provided in many fields. The control of chaos is another problem that has been studied. In recent years, a recurrent neural network has emerged, which is widely used to solve many problems in nonlinear dynamics and has fast and accurate computational speed. In this paper, we employ reservoir computing to control chaos in dynamic systems. The results show that the reservoir calculation algorithm with a control term can control the chaotic phenomenon in a dynamic system. Meanwhile, the method is applicable to dynamic systems with random noise. In addition, we investigate the problem of different values for neurons and leakage rates in the algorithm. The findings indicate that the performance of machine learning techniques can be improved by appropriately constructing neural networks.

1.
A. R.
Nieto
,
T.
Lilienkamp
,
J. M.
Seoane
et al, “
Control of escapes in two-degree-of-freedom open Hamiltonian systems
,”
Chaos
32
(
6
),
063118
(
2022
).
2.
Sajan
and
B.
Dubey
, “
Chaos control in a multiple delayed phytoplankton–zooplankton model with group defense and predator’s interference
,”
Chaos
31
(
8
),
083101
(
2021
).
3.
A.
El-Gohary
, “
Chaos and optimal control of equilibrium states of tumor system with drug
,”
Chaos Soliton Fractals
41
(
1
),
425
435
(
2009
).
4.
J.
Wang
,
Y.
Gao
,
Y.
Liu
et al, “
Intelligent dynamic practical-sliding-mode control for singular Markovian jump systems
,”
Inf. Sci.
607
,
153
172
(
2022
).
5.
D.
Shang
,
X.
Li
,
M.
Yin
et al, “
Dynamic modeling and control for dual-flexible servo system considering two-dimensional deformation based on neural network compensation
,”
Mech. Mach. Theory
175
,
104954
(
2022
).
6.
Y.-L.
Wang
,
H.
Jahanshahi
,
S.
Bekiros
et al, “
Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence
,”
Chaos Soliton Fractals
146
,
110881
(
2021
).
7.
A. K.
Shakya
,
K.
Bithel
,
G. N.
Pillai
et al, “
Deep reinforcement learning based super twisting controller for liquid slosh control problem
,”
IFAC-PapersOnLine
55
(
1
),
734
739
(
2022
).
8.
D.
Canaday
,
A.
Pomerance
, and
D. J.
Gauthier
, “
Model-free control of dynamical systems with deep reservoir computing
,”
J. Phys. Complexity
2
(
3
),
035025
(
2021
).
9.
G.
Manjunath
and
H.
Jaeger
, “
Echo state property linked to an input: Exploring a fundamental characteristic of recurrent neural networks
,”
Neural Comput.
25
(
3
),
671
696
(
2013
).
10.
H.
Fan
,
J.
Jiang
,
C.
Zhang
et al, “
Long-term prediction of chaotic systems with machine learning
,”
Phys. Rev. Res.
2
(
1
),
012080
(
2020
).
11.
J. Q.
Sun
,
Stochastic Dynamics and Control[M]
(
Elsevier
,
2006
).
12.
Y.
Ma
,
Z.
Zhang
,
L.
Yang
et al, “
A resilient optimized dynamic event-triggered mechanism on networked control system with switching behavior under mixed attacks
,”
Appl. Math. Comput.
430
,
127300
(
2022
).
13.
G. A.
Gottwald
and
I.
Melbourne
, “
On the implementation of the 0–1 test for chaos
,”
SIAM J. Appl. Dyn. Syst.
8
(
1
),
129
145
(
2009
).
14.
G. A.
Gottwald
and
I.
Melbourne
, “
Testing for chaos in deterministic systems with noise
,”
Physica D
212
(
1–2
),
100
110
(
2005
).
15.
G. A.
Gottwald
and
I.
Melbourne
, “
A new test for chaos in deterministic systems
,”
Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci.
460
(
2042
),
603
611
(
2004
).
16.
J.
Pathak
,
A.
Wikner
,
R.
Fussell
et al, “
Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model
,”
Chaos
28
(
4
),
041101
(
2018
).
17.
T. L.
Carroll
, “
Using reservoir computers to distinguish chaotic signals
,”
Phys. Rev. E
98
(
5
),
052209
(
2018
).
18.
A.
Griffith
,
A.
Pomerance
, and
D. J.
Gauthier
, “
Forecasting chaotic systems with very low connectivity reservoir computers
,”
Chaos
29
(
12
),
123108
(
2019
).
19.
Y.
Itoh
,
S.
Uenohara
,
M.
Adachi
et al, “
Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems
,”
Chaos
30
(
1
),
013128
(
2020
).
20.
W.
Maass
,
T.
Natschläger
, and
H.
Markram
, “
Real-time computing without stable states: A new framework for neural computation based on perturbations
,”
Neural Comput.
14
(
11
),
2531
2560
(
2002
).
21.
D.
Patel
,
D.
Canaday
,
M.
Girvan
et al, “
Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate, regime transitions, and the effect of stochasticity
,”
Chaos
31
(
3
),
033149
(
2021
).
22.
X.
Jin
,
J.
Shao
,
X.
Zhang
et al, “
Modeling of nonlinear system based on deep learning framework
,”
Nonlinear Dyn.
84
,
1327
1340
(
2016
).
23.
Y.
Li
,
S.
Xu
,
J.
Duan
et al, “
A machine learning method for computing quasi-potential of stochastic dynamical systems
,”
Nonlinear Dyn.
109
(
3
),
1877
1886
(
2022
).
24.
M.
Shen
,
J.
Yang
,
W.
Jiang
et al, “
Stochastic resonance in image denoising as an alternative to traditional methods and deep learning
,”
Nonlinear Dyn.
109
(
3
),
2163
2183
(
2022
).
25.
Y.
Sui
and
H.
Gao
, “
Modified echo state network for prediction of nonlinear chaotic time series
,”
Nonlinear Dyn.
110
(
4
),
3581
3603
(
2022
).
26.
A.
Rodan
and
P.
Tiňo
, “
Simple deterministically constructed cycle reservoirs with regular jumps
,”
Neural Comput.
24
(
7
),
1822
1852
(
2012
).
27.
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
et al, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
(
12
),
121102
(
2017
).
28.
Z.
Lu
,
J.
Pathak
,
B.
Hunt
et al, “
Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
,”
Chaos
27
(
4
), 041102 (
2017
).
29.
Z.-F.
Lin
,
Y.-M.
Liang
,
J.-L.
Zhao
et al, “
Prediction of dynamic systems driven by Lévy noise based on deep learning
,”
Nonlinear Dyn.
111
(
2
),
1511
1535
(
2023
).
30.
K.
Nakai
and
Y.
Saiki
, “
Machine-learning inference of fluid variables from data using reservoir computing
,”
Phys. Rev. E
98
(
2
),
023111
(
2018
).
31.
B. J.
Geurts
,
D. D.
Holm
, and
E.
Luesink
, “
Lyapunov exponents of two stochastic Lorenz 63 systems
,”
J. Stat. Phys.
179
,
1343
1365
(
2020
).
32.
R.
Wang
,
E.
Kalnay
, and
B.
Balachandran
, “
Neural machine-based forecasting of chaotic dynamics
,”
Nonlinear Dyn.
98
(
4
),
2903
2917
(
2019
).
33.
Z. F.
Lin
,
J. L.
Zhao
,
Y. M.
Liang
et al, “
RC-FODS algorithm for solving numerical solutions of fractional order dynamical system
,”
AIP Adv.
13
(
3
), 035307 (
2023
).
34.
Z.-F.
Lin
,
J.-L.
Zhao
,
Y.-M.
Liang
et al, “
Predicting solutions of the stochastic fractional order dynamical system using machine learning
,”
Theoret. Appl. Mech. Lett.
13
(
3
),
100433
(
2023
).
You do not currently have access to this content.