Here, we discuss how to achieve the stable actuation of a double beam torsional micro-actuator over the largest possible displacement of the moving component under the influence of Casimir and electrostatic torques, when the rotating component is constructed from different materials. The main part of this study is devoted to finding the optimal distribution of the electrostatic torque between the left and right sides of the micro-actuator to reach the maximum stable operation of the device. The latter is manifested by switching from homoclinic to heteroclinic orbits in the phase portraits. Indeed, the bifurcation curves and the phase portraits have been employed to show the sensitivity of the critical distribution of the electrostatic torque, beyond which the device does show stable performance, on the contrast of the optical properties of the moving component and the applied voltage in a conservative autonomous system. Moreover, for driven systems, the Melnikov function approach and the Poincaré portraits are used to study the presence of chaotic motion, which eventually leads to stiction. It is shown that the application of the optimal distribution of the electrostatic torque can significantly decrease the possibility of chaotic motion, and at this optimal level, the threshold curves reveal less difference between systems with different optical contrast.

1.
A. W.
Rodriguez
,
F.
Capasso
, and
S. G.
Johnson
, “
The Casimir effect in microstructured geometries
,”
Nat. Photonics
5
,
211
221
(
2011
).
2.
F.
Capasso
,
J. N.
Munday
,
D.
Iannuzzi
, and
H. B.
Chan
, “
Casimir forces and quantum electrodynamical torques: Physics and nanomechanics
,”
IEEE J. Sel. Top. Quantum Electron.
13
,
400
414
(
2007
).
3.
M.
Bordag
,
G. L.
Klimchitskaya
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Advances in the Casimir Effect
(
OUP Oxford
,
2009
).
4.
I. E.
Dzyaloshinskii
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
, “
The general theory of van der Waals forces
,”
Adv. Phys.
10
,
165
209
(
1961
).
5.
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect
,”
Eur. Phys. J. C
51
,
963
975
(
2007
).
6.
R. S.
Decca
,
D.
López
,
E.
Fischbach
,
G. L.
Klimchitskaya
,
D. E.
Krause
, and
V. M.
Mostepanenko
, “
Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates
,”
Phys. Rev. D
75
,
077101
(
2007
).
7.
S. K.
Lamoreaux
, “
The Casimir force: Background, experiments and applications
,”
Rep. Prog. Phys.
68
,
201
236
(
2005
).
8.
H. B.
Chan
,
V. A.
Aksyuk
,
R. N.
Kleiman
,
D. J.
Bishop
, and
F.
Capasso
, “
Nonlinear micromechanical Casimir oscillator
,”
Phys. Rev. Lett.
87
,
211801
(
2001
).
9.
H. G.
Craighead
, “
Nanoelectromechanical systems
,”
Science
290
,
1532
1535
(
2000
).
10.
H. B. G.
Casimir
, “
Zero point energy effects on quantum electrodynamics
,”
Proc. K. Ned. Akad. Wet.
51
,
793
(
1948
).
11.
E. M.
Lifshitz
, “
The theory of molecular attractive forces between solids
,”
Sov. Phys. JETP
2
,
73
(
1956
).
12.
A.
Canaguier-Durand
,
P. A. M.
Neto
,
A.
Lambrecht
, and
S.
Reynaud
, “
Thermal Casimir effect for Drude metals in the plane-sphere geometry
,”
Phys. Rev. A
82
,
012511
(
2010
).
13.
G.
Palasantzas
,
M.
Sedighi
, and
V. B.
Svetovoy
, “
Applications of Casimir forces: Nanoscale actuation and adhesion
,”
Appl. Phys. Lett.
117
,
120501
(
2020
).
14.
G.
Palasantzas
and
J. T. M.
De Hosson
, “
Pull-in characteristics of electromechanical switches in the presence of Casimir forces: Influence of self-affine surface roughness
,”
Phys. Rev. B
72
,
115426
(
2005
).
15.
M.
Sedighi
and
G.
Palasantzas
, “
Influence of low optical frequencies on actuation dynamics of microelectromechanical systems via Casimir forces
,”
J. Appl. Phys.
117
,
144901
(
2015
).
16.
M.
Sedighi
,
V. B.
Svetovoy
,
W. H.
Broer
, and
G.
Palasantzas
, “
Casimir forces from conductive silicon carbide surfaces
,”
Phys. Rev. B
89
,
195440
(
2014
).
17.
F.
Tajik
,
A. A.
Masoudi
,
Z.
Babamahdi
,
M.
Sedighi
, and
G.
Palasantzas
, “
Sensitivity of nonequilibrium Casimir forces on low frequency optical properties toward chaotic motion of microsystems: Drude vs plasma model
,”
Chaos
30
,
023108
(
2020
).
18.
F.
Tajik
,
M.
Sedighi
,
A. A.
Masoudi
,
H.
Waalkens
, and
G.
Palasantzas
, “
Dependence of chaotic behavior on optical properties and electrostatic effects in double-beam torsional Casimir actuation
,”
Phys. Rev. E
98
,
022210
(
2018
).
19.
F.
Tajik
,
M.
Sedighi
, and
G.
Palasantzas
, “
Sensitivity on materials optical properties of single beam torsional Casimir actuation
,”
J. Appl. Phys.
121
,
174302
(
2017
).
20.
F.
Tajik
,
M.
Sedighi
, and
G.
Palasantzas
, “
Sensitivity of actuation dynamics on normal and lateral Casimir forces: Interaction of phase change and topological insulator materials
,”
Chaos
31
,
103103
(
2021
).
21.
F.
Tajik
,
M.
Sedighi
, and
G.
Palasantzas
, “
Dynamical Casimir actuation under non-equilibrium conditions: The influence of optical properties from different interacting bodies
,”
Phys. Lett. A
443
,
128220
(
2022
).
22.
G.
Torricelli
,
I.
Pirozhenko
,
S.
Thornton
,
A.
Lambrecht
, and
C.
Binns
, “
Casimir force between a metal and a semimetal
,”
Europhys. Lett.
93
,
51001
(
2011
).
23.
F.
Tajik
,
M.
Sedighi
,
M.
Khorrami
,
A. A.
Masoudi
, and
G.
Palasantzas
, “
Chaotic behavior in Casimir oscillators: A case study for phase-change materials
,”
Phys. Rev. E
96
,
042215
(
2017
).
24.
V. B.
Svetovoy
,
P. J.
Van Zwol
,
G.
Palasantzas
, and
J. T. M.
De Hosson
, “
Optical properties of gold films and the Casimir force
,”
Phys. Rev. B
77
,
035439
(
2008
).
25.
W.
Broer
,
H.
Waalkens
,
V. B.
Svetovoy
,
J.
Knoester
, and
G.
Palasantzas
, “
Nonlinear actuation dynamics of driven Casimir oscillators with rough surfaces
,”
Phys. Rev. Appl.
4
,
054016
(
2015
).
26.
M. S.
Siewe
and
U. H.
Hegazy
, “
Homoclinic bifurcation and chaos control in MEMS resonators
,”
Appl. Math. Model.
35
,
5533
5552
(
2011
).
27.
F.
Tajik
,
A. A.
Masoudi
,
M.
Sedighi
, and
G.
Palasantzas
, “
Chaotic motion due to lateral Casimir forces during nonlinear actuation dynamics
,”
Chaos
30
,
073101
(
2020
).
28.
M.
Sedighi
,
W. H.
Broer
,
G.
Palasantzas
, and
B. J.
Kooi
, “
Sensitivity of micromechanical actuation on amorphous to crystalline phase transformations under the influence of Casimir forces
,”
Phys. Rev. B
88
,
165423
(
2013
).
29.
P. W.
Milonni
,
The Quantum Vacuum: An Introduction to Quantum Electrodynamics
(
Academic Press
,
2013
).
30.
S. K.
Lamoreaux
, “
Erratum: Demonstration of the Casimir force in the 0.6 to 6 μ m range
,”
Phys. Rev. Lett.
81
,
5475
5476
(
1998
).
31.
F.
Tajik
and
G.
Palasantzas
, “
Sensitivity of actuation dynamics of Casimir oscillators on finite temperature with topological insulator materials: Response of repulsive vs attractive interactions
,”
Phys. Lett. A
481
,
129032
(
2023
).
32.
R.
Satter
,
F.
Plotz
,
G.
Fattinger
, and
G.
Wachutka
, “
Modeling of an electrostatics torsional actuator: Demonstrated with an RF MEMS switch
,”
Sens. Actuators, A
97–98
,
337
346
(
2002
).
33.
M. W.
Hirsch
,
S.
Smale
, and
R. L.
Devaney
,
Differential Equations, Dynamical Systems, and an Introduction to Chaos
(
Elsevier Academic Press
,
San Diego
,
CA
,
2004
).
You do not currently have access to this content.