We implement and use quantum neural networks that exploit bit-flip quantum error-correcting codes that correct bit-flip errors in arbitrary logical qubit states. We introduce conjugate layer quantum autoencoders and use them in order to restore states impacted by amplitude damping through the utilization of an approximative four-qubit error-correcting codeword. Our specific implementation avoids barren plateaus of the cost function and improves the training time. Moreover, we propose a strategy that allows one to discover new encryption protocols tailored for specific quantum channels. This is exemplified by learning to generate logical qubits explicitly for the bit-flip channel. Our modified quantum neural networks consistently outperform the standard implementations across all tasks.

1.
J.
Biamonte
,
P.
Wittek
,
N.
Pancotti
,
P.
Rebentrost
,
N.
Wiebe
, and
S.
Lloyd
, “
Quantum machine learning
,”
Nature
549
,
195
(
2017
).
2.
S. A.
Stein
,
R.
L’Abbate
,
W.
Mu
,
Y.
Liu
,
B.
Baheri
,
Y.
Mao
,
G.
Qiang
,
A.
Li
, and
B.
Fang
, “A hybrid system for learning classical data in quantum states,” arXiv:2012.00256 (2021).
3.
D.
Uke
,
K. K.
Soni
, and
A.
Rasool
, “Quantum based support vector machine identical to classical model,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (IEEE, 2020).
4.
J. M.
Martinis
,
S.
Boixo
,
H.
Neven
,
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
, and
A.
Zalcman
, “Quantum supremacy using a programmable superconducting processor,”
Nature
574
,
505
510
(
2019
).
5.
K.
Beer
,
D.
Bondarenko
,
T.
Farrelly
,
T. J.
Osborne
,
R.
Salzmann
,
D.
Scheiermann
, and
R.
Wolf
, “
Training deep quantum neural networks
,”
Nat. Commun.
11
,
808
(
2020
).
6.
D.
Bondarenko
and
P.
Feldmann
, “
Quantum autoencoders to denoise quantum data
,”
Phys. Rev. Lett.
124
,
130502
(
2020
).
7.
T.
Achache
,
L.
Horesh
, and
J.
Smolin
, “Denoising quantum states with quantum autoencoders—Theory and applications,” arXiv:2012.14714 (2020).
8.
D. W.
Leung
,
M. A.
Nielsen
,
I. L.
Chuang
, and
Y.
Yamamoto
, “
Approximate quantum error correction can lead to better codes
,”
Phys. Rev. A
56
,
2567
(
1997
).
9.
A. S.
Fletcher
,
P. W.
Shor
, and
M. Z.
Win
, “
Channel-adapted quantum error correction for the amplitude damping channel
,”
IEEE Trans. Inf. Theory
54
,
5705
(
2008
).
10.
R. W. K.
Beer
and
D.
Bondarenko
, “
Efficient learning for deep quantum neural networks
,”
Nat. Commun.
11
,
808
(
2019
).
11.
D.
Deutsch
, “
Quantum theory, the Church–Turing principle and the universal quantum computer
,”
Proc. R. Soc. Lond. A
400
,
97
117
(
1985
).
12.
A.
Barenco
,
A.
Berthiaume
,
D.
Deutsch
,
A.
Ekert
,
R.
Jozsa
, and
C.
Macchiavello
, “
Stabilization of quantum computations by symmetrization
,”
SIAM J. Comput.
26
,
1541
(
1997
).
13.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
(1),
1929
1958
(
2014
).
14.
O.
Ronneberger
,
P.
Fischer
, and
T.
Brox
, “U-Net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Lecture Notes in Computer Science (Springer, 2015).
15.
Y.
Kwak
,
W. J.
Yun
,
S.
Jung
, and
J.
Kim
, “Quantum neural networks: Concepts, applications, and challenges,” arXiv:2108.01468 (2021).
16.
K.
Sharma
,
M.
Cerezo
,
L.
Cincio
, and
P. J.
Coles
, “
Trainability of dissipative perceptron-based quantum neural networks
,”
Phys. Rev. Lett.
128
, 180505 (
2022
).
17.
G. D.
Paparo
,
V.
Dunjko
,
A.
Makmal
,
M. A.
Martin-Delgado
, and
H. J.
Briegel
, “
Quantum speedup for active learning agents
,”
Phys. Rev. X
4
, 031002 (
2014
).
You do not currently have access to this content.