Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution’s energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile.

1.
D. K.
Campbell
,
S.
Flach
, and
Yu. S.
Kivshar
,
Phys. Today
57
(
1
),
43
(
2004
).
2.
S.
Flach
and
C. R.
Willis
,
Phys. Rep.
295
,
181
(
1998
).
3.
S.
Flach
and
A. V.
Gorbach
,
Phys. Rep.
467
,
1
(
2008
).
5.
A. J.
Sievers
and
S.
Takeno
,
Phys. Rev. Lett.
61
,
970
(
1988
).
7.
R. S.
MacKay
and
S.
Aubry
,
Nonlinearity
7
,
1623
(
1994
).
8.
F.
Lederer
,
G. I.
Stegeman
,
D. N.
Christodoulides
,
G.
Assanto
,
M.
Segev
, and
Y.
Silberberg
,
Phys. Rep.
463
,
1
(
2008
).
9.
O.
Morsch
and
M.
Oberthaler
,
Rev. Mod. Phys.
78
,
179
(
2006
).
10.
C.
Chong
and
P. G.
Kevrekidis
,
Coherent Structures in Granular Crystals: From Experiment and Modelling to Computation and Mathematical Analysis
(
Springer International Publishing
,
2018
).
11.
M.
Remoissenet
,
Waves Called Solitons
(
Springer-Verlag
,
Berlin
,
1999
).
12.
P.
Binder
,
D.
Abraimov
,
A. V.
Ustinov
,
S.
Flach
, and
Y.
Zolotaryuk
,
Phys. Rev. Lett.
84
,
745
(
2000
).
13.
E.
Trías
,
J. J.
Mazo
, and
T. P.
Orlando
,
Phys. Rev. Lett.
84
,
741
(
2000
).
14.
M.
Sato
,
B. E.
Hubbard
, and
A. J.
Sievers
,
Rev. Mod. Phys.
78
,
137
(
2006
).
15.
M.
Haas
,
V.
Hizhnyakov
,
A.
Shelkan
,
M.
Klopov
, and
A. J.
Sievers
,
Phys. Rev. B
84
,
144303
(
2011
).
16.
J. A.
Baimova
,
E. A.
Korznikova
,
I. P.
Lobzenko
, and
S. V.
Dmitriev
,
Rev. Adv. Mater. Sci.
42
,
68
(
2015
), https://www.ipme.ru/e-journals/RAMS/no_14215/08_14215_baimova.html.
18.
P. E.
Farrell
,
A.
Birkisson
, and
S. W.
Funke
,
SIAM J. Sci. Comput.
37
,
A2026
(
2015
).
19.
E. G.
Charalampidis
,
P. G.
Kevrekidis
, and
P. E.
Farrell
,
Commun. Nonlinear Sci. Numer. Simul.
54
,
482
(
2018
).
20.
E. G.
Charalampidis
,
N.
Boullé
,
P. E.
Farrell
, and
P. G.
Kevrekidis
,
Commun. Nonlinear Sci. Numer. Simul.
87
,
105255
(
2020
).
21.
N.
Boullé
,
E. G.
Charalampidis
,
P. E.
Farrell
, and
P. G.
Kevrekidis
,
Phys. Rev. A
102
,
053307
(
2020
).
22.
N.
Boullé
,
I.
Newell
,
P. E.
Farrell
, and
P. G.
Kevrekidis
,
Phys. Rev. A
107
,
012813
(
2023
).
23.
V. S.
Kalantonis
,
E. A.
Perdios
,
A. E.
Perdiou
,
O.
Ragos
, and
M. N.
Vrahatis
,
Astrophys. Space Sci.
288
,
489
(
2003
).
24.
J. L.
Marín
and
S.
Aubry
,
Nonlinearity
9
,
1501
(
1996
).
26.
A. M.
Morgante
,
M.
Johansson
,
S.
Aubry
, and
G.
Kopidakis
,
J. Phys. A: Math. Gen.
35
,
4999
(
2002
).
27.
J. F. R.
Archilla
,
J.
Cuevas
,
B.
Sánchez-Rey
, and
A.
Alvarez
,
Physica D
180
,
235
(
2003
).
28.
V.
Koukouloyannis
and
P. G.
Kevrekidis
,
Nonlinearity
22
,
2269
(
2009
).
29.
D. E.
Pelinovsky
and
A.
Sakovich
,
Nonlinearity
25
,
3423
(
2012
).
30.
P. G.
Kevrekidis
,
J.
Cuevas-Maraver
, and
D. E.
Pelinovsky
,
Phys. Rev. Lett.
117
,
094101
(
2016
).
31.
R.
Parker
,
J.
Cuevas-Maraver
,
P. G.
Kevrekidis
, and
A.
Aceves
,
Nonlinearity
35
,
5714
(
2022
).
32.
J.
Cuevas-Maraver
,
P. G.
Kevrekidis
, and
D. E.
Pelinovsky
,
Stud. Appl. Math.
137
,
214
(
2016
).
33.
M. P.
Calvo
and
J. M.
Sanz-Serna
,
SIAM J. Sci. Comput.
14
,
936
(
1993
).
34.
A. R.
Champneys
and
B.
Sandstede
, in
Numerical Continuation Methods for Dynamical Systems
, edited by
B.
Krauskopf
,
H. M.
Osinga
, and
J.
Galán-Vioque
(
Springer
,
Dordrecht
,
2007
). pp.
331
358
.
You do not currently have access to this content.