We consider two models of deterministic active particles in an external potential. In the limit where the speed of a particle is fixed, both models nearly coincide and can be formulated as a Hamiltonian system, but only if the potential is time-independent. If the particles are identical, their interaction via a potential force leads to conservative dynamics with a conserved phase volume. In contrast, the phase volume is shown to shrink for non-identical particles even if the confining potential is time-independent.
REFERENCES
1.
H.
Chaté
, “Dry aligning dilute active matter
,” Annu. Rev. Condens. Matter Phys.
11
, 189
–212
(2020
). 2.
G.
Gompper
, R. G.
Winkler
, T.
Speck
, A.
Solon
, C.
Nardini
, F.
Peruani
, H.
Löwen
, R.
Golestanian
, U. B.
Kaupp
, L.
Alvarez
et al., “The 2020 motile active matter roadmap
,” J. Phys.: Condens. Matter.
32
, 193001
(2020
). 3.
I. S.
Aranson
, “Active colloids
,” Phys. Usp.
56
, 79
(2013
). 4.
C.
Bechinger
, R.
Di Leonardo
, H.
Löwen
, C.
Reichhardt
, G.
Volpe
, and G.
Volpe
, “Active particles in complex and crowded environments
,” Rev. Mod. Phys.
88
, 045006
(2016
). 5.
F.
Peruani
and I. S.
Aranson
, “Cold active motion: How time-independent disorder affects the motion of self-propelled agents
,” Phys. Rev. Lett.
120
, 238101
(2018
). 6.
U.
Erdmann
, W.
Ebeling
, L.
Schimansky-Geier
, and F.
Schweitzer
, “Brownian particles far from equilibrium
,” Eur. Phys. J. B
15
, 105
–113
(2000
). 7.
P.
Romanczuk
, M.
Bär
, W.
Ebeling
, B.
Lindner
, and L.
Schimansky-Geier
, “Active Brownian particles: From individual to collective stochastic dynamics
,” Eur. Phys. J. Special Topics
202
, 1
–162
(2012
). 8.
I. S.
Aranson
and A.
Pikovsky
, “Confinement and collective escape of active particles
,” Phys. Rev. Lett.
128
, 108001
(2022
). 9.
U.
Erdmann
, W.
Ebeling
, and V. S.
Anishchenko
, “Excitation of rotational modes in two-dimensional systems of driven Brownian particles
,” Phys. Rev. E
65
, 061106
(2002
). 10.
U.
Erdmann
and W.
Ebeling
, “On the attractors of two-dimensional Rayleigh oscillators including noise
,” Int. J. Bifurcation Chaos
15
, 3623
–3633
(2005
). 11.
K.-D. N. T.
Lam
, M.
Schindler
, and O.
Dauchot
, “Self-propelled hard disks: Implicit alignment and transition to collective motion
,” New J. Phys.
17
, 113056
(2015
). 12.
O.
Dauchot
and V.
Démery
, “Dynamics of a self-propelled particle in a harmonic trap
,” Phys. Rev. Lett.
122
, 068002
(2019
). 13.
P.
Baconnier
, D.
Shohat
, C. H.
López
, C.
Coulais
, V.
Démery
, G.
Düring
, and O.
Dauchot
, “Selective and collective actuation in active solids
,” Nat. Phys.
18
, 1234
–1239
(2022
). 14.
R. H.
Damascena
, L. R. E.
Cabral
, and C. C. D. S.
Silva
, “Coexisting orbits and chaotic dynamics of a confined self-propelled particle
,” Phys. Rev. E
105
, 064608
(2022
). 15.
Y. A.
Kravtsov
and Y. I.
Orlov
, Geometrical Optics of Inhomogeneous Media
(Springer
, Berlin
, 1990
).16.
T. D.
Ross
, D.
Osmanović
, J. F.
Brady
, and P. W. K.
Rothemund
, “Ray optics for gliders
,” ACS Nano
16
, 16191
–16200
(2022
). 17.
A.
Romano
and R.
Cavaliere
, Geometric Optics
(Birkhäuser
, Cham
, 2016
).18.
O.
Chepizhko
and F.
Peruani
, “Diffusion, subdiffusion, and trapping of active particles in heterogeneous media
,” Phys. Rev. Lett.
111
, 160604
(2013
). 19.
J. R.
Touma
, A.
Shreim
, and L. I.
Klushin
, “Self-organization in two-dimensional swarms
,” Phys. Rev. E
81
, 066106
(2010
). 20.
A. A.
Al Sayegh
, L.
Klushin
, and J.
Touma
, “Steady and transient states in low-energy swarms: Stability and first-passage times
,” Phys. Rev. E
93
, 032602
(2016
). 21.
G.
Briand
, M.
Schindler
, and O.
Dauchot
, “Spontaneously flowing crystal of self-propelled particles
,” Phys. Rev. Lett.
120
, 208001
(2018
). 22.
M.
Rex
and H.
Löwen
, “Lane formation in oppositely charged colloids driven by an electric field: Chaining and two-dimensional crystallization
,” Phys. Rev. E
75
, 051402
(2007
). 23.
A.
Pikovsky
, “Transition to synchrony in chiral active particles
,” J. Phys. Complexity
2
, 025009
(2021
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.