We study a two-layer energy balance model that allows for vertical exchanges between a surface layer and the atmosphere. The evolution equations of the surface temperature and the atmospheric temperature are coupled by the emission of infrared radiation by one level, that emission being partly captured by the other layer, and the effect of all non-radiative vertical exchanges of energy. Therefore, an essential parameter is the absorptivity of the atmosphere, denoted ε a . The value of ε a depends critically on greenhouse gases: increasing concentrations of CO 2 and CH 4 lead to a more opaque atmosphere with higher values of ϵ a . First, we prove that global existence of solutions of the system holds if and only if ε a ( 0 , 2 ) and blow up in finite time occurs if ε a > 2 . (Note that the physical range of values for ε a is ( 0 , 1 ] .) Next, we explain the long time dynamics for ε a ( 0 , 2 ) , and we prove that all solutions converge to some equilibrium point. Finally, motivated by the physical context, we study the dependence of the equilibrium points with respect to the involved parameters, and we prove, in particular, that the surface temperature increases monotonically with respect to ε a . This is the key mathematical manifestation of the greenhouse effect.

1.
J. P.
Peixoto
,
A. H.
Oort
, and
E. N.
Lorenz
,
Physics of Climate
(
Springer
,
1992
), Vol. 520.
2.
V.
Lucarini
,
R.
Blender
,
C.
Herbert
,
F.
Ragone
,
S.
Pascale
, and
J.
Wouters
, “
Mathematical and physical ideas for climate science
,”
Rev. Geophys.
52
,
809
859
, https://doi.org/10.1002/2013RG000446 (
2014
).
3.
I. M.
Held
, “
The gap between simulation and understanding in climate modeling
,”
Bull. Am. Meteorol. Soc.
86
,
1609
1614
(
2005
).
4.
M.
Ghil
and
V.
Lucarini
, “
The physics of climate variability and climate change
,”
Rev. Mod. Phys.
92
,
035002
(
2020
).
5.
M. I.
Budyko
, “
The effect of solar radiation variations on the climate of the earth
,”
Tellus
21
,
611
619
(
1969
).
6.
W. D.
Sellers
, “
A global climatic model based on the energy balance of the earth-atmosphere system
,”
J. Appl. Meteorol. (1962–1982)
8
,
392
400
(
1969
).
7.
H.
Kaper
and
H.
Engler
,
Mathematics & Climate
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2013
), pp. xx+295.
8.
G. R.
North
, “
Theory of energy-balance climate models
,”
J. Atmos. Sci.
32
,
2033
2043
(
1975
).
9.
G. R.
North
,
R. F.
Cahalan
, and
J. A.
Coakley
, “
Energy balance climate models
,”
Rev. Geophys.
19
,
91
121
, https://doi.org/10.1029/RG019i001p00091 (
1981
).
10.
G. R.
North
,
J. G.
Mengel
, and
D. A.
Short
, “
Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages
,”
J. Geophys. Res.: Oceans
88
,
6576
6586
, https://doi.org/10.1029/JC088iC11p06576 (
1983
).
11.
M.
Ghil
, “
Climate stability for a Sellers-type model
,”
J. Atmos. Sci.
33
,
3
20
(
1976
).
12.
I. M.
Held
and
M. J.
Suarez
, “
Simple albedo feedback models of the icecaps
,”
Tellus
26
,
613
629
(
1974
).
13.
J. I.
Díaz
and
G.
Hetzer
, “A quasilinear functional reaction-diffusion equation arising in climatology,” in Équations aux dérivées partielles et applications (Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998), pp. 461–480.
14.
J. I.
Díaz
,
G.
Hetzer
, and
L.
Tello
, “
An energy balance climate model with hysteresis
,”
Nonlinear Anal.
64
,
2053
2074
(
2006
).
15.
J. I.
Díaz
and
L.
Tello
, “
A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology
,”
Collect. Math.
50
,
19
51
(
1999
).
16.
G.
Hetzer
, “
Global existence, uniqueness, and continuous dependence for a reaction-diffusion equation with memory
,”
Electr. J. Differ. Eq.
1996
,
1
16
(
1996
).
17.
G.
Hetzer
, “
The number of stationary solutions for a one-dimensional Budyko-type climate model
,”
Nonlinear Anal.: Real World Appl.
2
,
259
272
(
2001
).
18.
G.
Hetzer
, “
Global existence for a functional reaction-diffusion problem from climate modeling
,”
Discr. Cont. Dyn. Syst. Ser. A
2011
,
660
671
(
2011
).
19.
F.
Chen
and
M.
Ghil
, “
Interdecadal variability in a hybrid coupled ocean-atmosphere model
,”
J. Phys. Oceanogr.
26
,
1561–1578
(
1996
).
20.
P. F.
Hoffman
and
D. P.
Schrag
, “
The snowball earth hypothesis: Testing the limits of global change
,”
Terra Nova
14
,
129
155
(
2002
).
21.
R. T.
Pierrehumbert
,
Principles of Planetary Climate
(
Cambridge University Press
,
Cambridge
,
2010
), pp. xxvi+652.
22.
V.
Lucarini
and
T.
Bódai
, “
Edge states in the climate system: Exploring global instabilities and critical transitions
,”
Nonlinearity
30
,
R32
R66
(
2017
).
23.
V.
Lucarini
and
T.
Bódai
, “
Transitions across melancholia states in a climate model: Reconciling the deterministic and stochastic points of view
,”
Phys. Rev. Lett.
122
,
158701
(
2019
).
24.
V.
Lucarini
and
T.
Bódai
, “
Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions
,”
Nonlinearity
33
,
R59
R92
(
2020
).
25.
U.
Feudel
,
A. N.
Pisarchik
, and
K.
Showalter
, “Multistability and tipping: From mathematics and physics to climate and brain—Minireview and preface to the focus issue,”
Chaos
28
(
3
),
033501
(
2018
).
26.
T. M.
Lenton
,
H.
Held
,
E.
Kriegler
,
J. W.
Hall
,
W.
Lucht
,
S.
Rahmstorf
, and
H. J.
Schellnhuber
, “
Tipping elements in the earth’s climate system
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
1786
1793
(
2008
).
27.
W.
Bagniewski
,
D.-D.
Rousseau
, and
M.
Ghil
, “
The paleojump database for abrupt transitions in past climates
,”
Sci. Rep.
13
,
4472
(
2023
).
28.
N.
Boers
,
M.
Ghil
, and
T. F.
Stocker
, “
Theoretical and paleoclimatic evidence for abrupt transitions in the earth system
,”
Environ. Res. Lett.
17
,
093006
(
2022
).
29.
C. A.
Boulton
,
T. M.
Lenton
, and
N.
Boers
, “
Pronounced loss of amazon rainforest resilience since the early 2000s
,”
Nat. Clim. Change
12
,
271
278
(
2022
).
30.
N.
Boers
, “
Observation-based early-warning signals for a collapse of the atlantic meridional overturning circulation
,”
Nat. Clim. Change
11
,
680
688
(
2021
).
31.
T.
Lenton
,
V.
Livina
,
V.
Dakos
,
E.
Van Nes
, and
M.
Scheffer
, “
Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness
,”
Philos. Trans. R. Soc. A
370
,
1185
1204
(
2012
).
32.
M. D.
Chekroun
,
A.
Tantet
,
H. A.
Dijkstra
, and
J. D.
Neelin
, “
Ruelle–Pollicott resonances of stochastic systems in reduced state space. Part I: Theory
,”
J. Stat. Phys.
179
,
1366
1402
(
2020
).
33.
M. S.
Gutiérrez
and
V.
Lucarini
, “
On some aspects of the response to stochastic and deterministic forcings
,”
J. Phys. A: Math. Theor.
55
,
425002
(
2022
).
34.
C.
Boettner
and
N.
Boers
, “
Critical slowing down in dynamical systems driven by nonstationary correlated noise
,”
Phys. Rev. Res.
4
,
013230
(
2022
).
35.
D. L.
Hartmann
,
Global Physical Climatology
, 2nd ed. (
Newnes
,
2016
), Vol. 103.
36.
G. R.
North
and
K.-Y.
Kim
,
Energy Balance Climate Models
(
John Wiley & Sons
,
2017
).
37.
J. M.
Gregory
, “
Vertical heat transports in the ocean and their effect on time-dependent climate change
,”
Clim. Dyn.
16
,
501
515
(
2000
).
38.
I. M.
Held
,
M.
Winton
,
K.
Takahashi
,
T.
Delworth
,
F.
Zeng
, and
G. K.
Vallis
, “
Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing
,”
J. Clim.
23
,
2418
2427
(
2010
).
39.
H.
Stommel
, “
Thermohaline convection with two stable regimes of flow
,”
Tellus
13
,
224
230
(
1961
).
40.
A. P.
Ingersoll
, “
The runaway greenhouse: A history of water on Venus
,”
J. Atmos. Sci.
26
,
1191
1198
(
1969
).
41.
J. F.
Kasting
, “
Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus
,”
Icarus
74
,
472
494
(
1988
).
42.
M. J.
Way
and
A. D.
Del Genio
, “
Venusian habitable climate scenarios: Modeling Venus through time and applications to slowly rotating Venus-like exoplanets
,”
J. Geophys. Res.: Planets
125
,
e2019JE006276
, https://doi.org/10.1029/2019JE006276 (
2020
).
43.
H. L.
Smith
, Monotone Dynamical Systems, Mathematical Surveys and Monographs Vol. 41 (American Mathematical Society, Providence, RI, 1995), pp. x+174, An introduction to the theory of competitive and cooperative systems.
44.
M.
Cristofol
and
L.
Roques
, “
Stable estimation of two coefficients in a nonlinear Fisher–KPP equation
,”
Inverse Probl.
29
,
095007
(
2013
).
45.
L.
Roques
,
M. D.
Chekroun
,
M.
Cristofol
,
S.
Soubeyrand
, and
M.
Ghil
, “
Parameter estimation for energy balance models with memory
,”
Proc. R. Soc. Lond. Ser. A
470
,
20140349
(
2014
).
46.
P.
Martinez
,
J.
Tort
, and
J.
Vancostenoble
, “
Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold
,”
Riv. Mat. della Univ. Parma New Ser. A
7
,
351
389
(
2016
).
47.
P.
Cannarsa
,
M.
Malfitana
, and
P.
Martinez
, “Parameter determination for energy balance models with memory,” in Mathematical Approach to Climate Change and Its Impacts (Springer, 2020), pp. 83–130.
48.
J. B.
Conway
,
Functions of One Complex Variable
, 2nd ed. (
Springer Verlag
,
New York
,
1978
).
49.
H.
Cartan
,
Théorie Élémentaire des Fonctions Analytiques d’une ou Plusieurs Varibales Complexes
(
Hermann
,
1961
).
You do not currently have access to this content.