Synchronization study allows a better understanding of the exchange of information among systems. In this work, we study experimental data recorded from a set of Rössler-like chaotic electronic oscillators arranged in a complex network, where the interactions between the oscillators are given in terms of a connectivity matrix, and their intensity is controlled by a global coupling parameter. We use the zero and one persistent homology groups to characterize the point clouds obtained from the signals recorded in pairs of oscillators. We show that the normalized persistent entropy ( N P E) allows us to characterize the effective coupling between pairs of oscillators because it tends to increase with the coupling strength and to decrease with the distance between the oscillators. We also observed that pairs of oscillators that have similar degrees and are nearest neighbors tend to have higher N P E values than pairs with different degrees. However, large variability is found in the N P E values. Comparing the N P E behavior with that of the phase-locking value ( P L V, commonly used to evaluate the synchronization of phase oscillators), we find that for large enough coupling, P L V only displays a monotonic increase, while N P E shows a richer behavior that captures variations in the behavior of the oscillators. This is due to the fact that P L V only captures coupling-induced phase changes, while N P E also captures amplitude changes. Moreover, when we consider the same network but with Kuramoto phase oscillators, we also find that N P E captures the transition to synchronization (as it increases with the coupling strength), and it also decreases with the distance between the oscillators. Therefore, we propose N P E as a data analysis technique to try to differentiate pairs of oscillators that have strong effective coupling because they are first or near neighbors, from those that have weaker coupling because they are distant neighbors.

1.
T.
Schreiber
, “
Interdisciplinary application of nonlinear time series methods
,”
Phys. Rep.
308
,
1
64
(
1999
).
2.
D.
Halliday
and
J.
Rosenberg
, “Time and frequency domain analysis of spike train and time series data,” in Modern Techniques in Neuroscience Research (Springer, Berlin, 1999), pp. 503–543.
3.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
, 2nd ed. (
Cambridge University Press
,
2004
).
4.
B.
Goswami
, “
A brief introduction to nonlinear time series analysis and recurrence plots
,”
Vibration
2
,
332
368
(
2019
).
5.
A.
Keil
,
E. M.
Bernat
,
M. X.
Cohen
,
M.
Ding
,
M.
Fabiani
,
G.
Gratton
,
E. S.
Kappenman
,
E.
Maris
,
K. E.
Mathewson
,
R. T.
Ward
, and
N.
Weisz
, “
Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series
,”
Psychophysiology
59
,
1
37
(
2022
).
6.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, Berlin, 1975), pp. 420–422.
7.
M.
Rosenblum
and
J.
Kurths
, “Analysing synchronization phenomena from bivariate data by means of the Hilbert transform,” in Nonlinear Analysis of Physiological Data (Springer, Berlin, 1998), pp. 91–99.
8.
F.
Mormann
,
K.
Lehnertz
,
P.
David
, and
C. E.
Elger
, “
Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients
,”
Physica D
144
,
358
369
(
2000
).
9.
X.-S.
Yang
, “
A framework for synchronization theory
,”
Chaos Soliton. Fract.
11
,
1365
1368
(
2000
).
10.
M.
Rosenblum
,
A.
Pikovsky
,
J.
Kurths
,
C.
Schafer
, and
P.
Tass
, “Phase synchronization: From theory to data analysis,” in Neuro-Informatics and Neural Modelling, Handbook of Biological Physics, edited by F. Moss and S. Gielen (North-Holland, 2001), Chap. 9, Vol. 4, pp. 279–321.
11.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
185
(
2005
).
12.
J. G.
Dong
and
X.
Xue
, “
Synchronization analysis of Kuramoto oscillators
,”
Commun. Math. Sci.
11
,
465
480
(
2013
).
13.
L.
Lacasa
,
V.
Nicosia
, and
V.
Latora
, “
Network structure of multivariate time series
,”
Sci. Rep.
5
,
1
9
(
2015
).
14.
D.
Aguilar-Velázquez
and
L.
Guzmán-Vargas
, “
Synchronization and 1/f signals in interacting small-world networks
,”
Chaos Soliton. Fract.
104
,
418
425
(
2017
).
15.
D.
Aguilar-Velázquez
and
L.
Guzmán-Vargas
, “
Critical synchronization and 1/f noise in inhibitory/excitatory rich-club neural networks
,”
Sci. Rep.
9
,
1
13
(
2019
).
16.
I.
Leyva
and
C.
Masoller
, “
Inferring the connectivity of coupled oscillators and anticipating their transition to synchrony through lag-time analysis
,”
Chaos Soliton. Fract.
133
,
109604
(
2020
).
17.
N.
Kumari
and
S.
Dwivedi
, “
Fundamental concepts of synchronization an introduction: From classical to modern
,”
Resonance
25
,
539
565
(
2020
).
18.
H.
Seifert
and
W.
Threlfall
, A Textbook of Topology, British Library Cataloguing-in-Publication Data (Academic Press, 1980).
19.
J.
Munkres
, Elements of Algebraic Topology, 2nd ed., Library of Congress Cataloguing in Publication Data (Addison-Wesley Publishing Company, 1984).
20.
A.
Hatcher
,
Algebraic Topology
, 1st ed. (
Cornell University Press
,
2001
).
21.
J.
Munkres
, Topology, 2nd ed., British Library Cataloguing-in-Publication Data (Pearson Education Limited, 2014).
22.
T. K.
Dey
and
Y.
Wang
,
Computational Topology for Data Analysis
(
Cambridge University Press
,
2022
).
23.
H.
Edelsbrunner
,
D.
Letscher
, and
A.
Zomorodian
, “
Topological persistence and simplification
,”
Discrete Comput. Geom.
28
,
511
533
(
2002
).
24.
G.
Carlsson
,
A.
Zomorodian
,
A.
Collins
, and
L. J.
Guibas
, “
Persistence barcodes for shapes
,”
Int. J. Shape Model.
11
,
149
187
(
2005
).
25.
A.
Zomorodian
and
G.
Carlsson
, “The theory of multidimensional persistence,” in Proceedings of the Twenty-Third Annual Symposium on Computational Geometry (Association for Computing Machinery, 2007), pp. 184–193.
26.
C.
Epstein
,
G.
Carlsson
, and
H.
Edelsbrunner
, “
Topological data analysis
,”
Inverse Probl.
27
,
120201
(
2011
).
27.
A.
Zomorodian
, “
Topological data analysis
,”
Adv. Appl. Comput. Topol.
70
,
39
(
2012
).
28.
J.
Perea
and
J.
Harer
, “Sliding windows and persistence: An application of topological methods to signal analysis,” arXiv:1307.6188 [math.AT] (2013).
29.
J. L.
Nielson
,
J.
Paquette
,
A. W.
Liu
,
C. F.
Guandique
,
C. A.
Tovar
,
T.
Inoue
,
K.-A.
Irvine
,
J. C.
Gensel
,
J.
Kloke
,
T. C.
Petrossian
,
P. Y.
Lum
,
G. E.
Carlsson
,
G. T.
Manley
,
W.
Young
,
M. S.
Beattie
,
J. C.
Bresnahan
, and
A. R.
Ferguson
, “
Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury
,”
Nat. Commun.
6
,
8581
(
2015
).
30.
D.
Taylor
,
F.
Klimm
,
H. A.
Harrington
,
M.
Kramár
,
K.
Mischaikow
,
M. A.
Porter
, and
P. J.
Mucha
, “
Topological data analysis of contagion maps for examining spreading processes on networks
,”
Nat. Commun.
6
,
7723
(
2015
).
31.
S.
Maletić
,
Y.
Zhao
, and
M.
Rajković
, “
Persistent topological features of dynamical systems
,”
Chaos
26
,
053105
(
2016
).
32.
K.
Mittal
and
S.
Gupta
, “
Topological characterization and early detection of bifurcations and chaos in complex systems using persistent homology
,”
Chaos
27
,
051102
(
2017
).
33.
E.
Munch
, “
A user’s guide to topological data analysis
,”
J. Learn. Anal.
4
,
47
61
(
2017
).
34.
L.
Wasserman
, “
Topological data analysis
,”
Annu. Rev. Stat. Appl.
5
,
501
532
(
2018
).
35.
N.
Ravishanker
and
R.
Chen
, “Topological data analysis (TDA) for time series,” arXiv:1909.10604 (2019).
36.
G.
Carlsson
, “
Topological methods for data modelling
,”
Nat. Rev. Phys.
2
,
697
708
(
2020
).
37.
F.
Chazal
and
B.
Michel
, “
An introduction to topological data analysis: Fundamental and practical aspects for data scientists
,”
Front. Artif. Intell.
4
,
667963
(
2021
).
38.
G.
Carlsson
and
M.
Vejdemo-Johansson
,
Topological Data Analysis with Applications
, 1st ed. (
Cambridge University Press
,
2021
).
39.
A.
Zomorodian
and
G.
Carlsson
, “Computing persistent homology,” in Proceedings of the Twentieth Annual Symposium on Computational Geometry (Association for Computing Machinery, New York, NY, 2004), pp. 347–356.
40.
H.
Edelsbrunner
and
J.
Harer
, “
Persistent homology—A survey
,”
Contemp. Math.
453
,
257
282
(
2008
).
41.
G.
Carlsson
, “
Topology and data
,”
Bull. Am. Math. Soc.
46
,
255
308
(
2009
).
42.
H.
Edelsbrunner
and
D.
Morozov
, “Persistent homology: Theory and practice,” California Digital Library (2013).
43.
J.
Berwald
,
M.
Gidea
, and
M.
Vejdemo-Johansson
, “
Automatic recognition and tagging of topologically different regimes in dynamical systems
,”
Discontinuity Nonlinearity Complex.
3
(
4
),
413
426
(
2014
).
44.
N.
Atienza
,
R.
Gonzalez-Díaz
, and
M.
Soriano-Trigueros
, “
On the stability of persistent entropy and new summary functions for topological data analysis
,”
Pattern Recognit.
107
,
107509
(
2020
).
45.
B. T.
Fasy
,
F.
Lecci
,
A.
Rinaldo
,
L.
Wasserman
,
S.
Balakrishnan
, and
A.
Singh
, “
Confidence sets for persistence diagrams
,”
Ann. Stat.
42
,
2301
2339
(
2014
).
46.
N.
Atienza
,
R.
Gonzalez-Díaz
, and
M.
Rucco
, “
Persistent entropy for separating topological features from noise in Vietoris-Rips complexes
,”
J. Intell. Inf. Syst.
52
,
637
655
(
2019
).
47.
M.
Rucco
,
F.
Castiglione
,
E.
Merelli
, and
M.
Pettini
, “Characterisation of the idiotypic immune network through persistent entropy,” in
Proceedings of the European Conference on Complex Systems (ECCS14)
, edited by
S.
Battiston
,
F.
De Pellegrini
,
G.
Caldarelli
, and
E.
Merelli
(
Springer International Publishing
,
Cham
,
2014
), pp.
117
128
.
48.
H.
Chintakunta
,
T.
Gentimis
,
R.
Gonzalez-Diaz
,
M.-J.
Jimenez
, and
H.
Krim
, “
An entropy-based persistence barcode
,”
Pattern Recognit.
48
,
391
401
(
2015
).
49.
F.
Takens
, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. 366–381.
50.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
51.
A.
Albano
,
A.
Passamante
, and
M. E.
Farrell
, “
Using higher-order correlations to define an embedding window
,”
Physica D
54
,
85
97
(
1991
).
52.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
53.
D.
Li
,
M.
Cao
,
E.
Manoach
, and
M.
Ragulskis
, “
A novel embedding method for characterization of low-dimensional nonlinear dynamical systems
,”
Nonlinear Dyn.
104
,
125
148
(
2021
).
54.
H.
Zhu
and
J.
Huang
, “
A new method for determining the embedding dimension of financial time series based on Manhattan distance and recurrence quantification analysis
,”
Entropy
24
,
1298
(
2022
).
55.
A. E.
Sizemore
,
J. E.
Phillips-Cremins
,
R.
Ghrist
, and
D. S.
Bassett
, “
The importance of the whole: Topological data analysis for the network neuroscientist
,”
Network Neurosci.
3
(
3
),
656
673
(
2019
).
56.
Y.-M.
Chung
,
C.-S.
Hu
,
Y.-L.
Lo
, and
H.-T.
Wu
, “
A persistent homology approach to heart rate variability analysis with an application to sleep-wake classification
,”
Front. Physiol.
12
,
637684
(
2021
).
57.
Y.
Skaf
and
R.
Laubenbacher
, “
Topological data analysis in biomedicine: A review
,”
J. Biomed. Inf.
130
,
104082
(
2022
).
58.
X.
Xu
,
J.
Cisewski-Kehe
,
S.
Green
, and
D.
Nagai
, “
Finding cosmic voids and filament loops using topological data analysis
,”
Astron. Comput.
27
,
34
52
(
2019
).
59.
A.
Cole
and
G.
Shiu
, “Towards the “shape” of cosmological observables and the string theory landscape with topological data analysis,” in Progress in Information Geometry: Theory and Applications (Springer International Publishing, Cham, 2021), pp. 219–244.
60.
P.
Christian
,
C.-K.
Chan
,
A.
Hsu
,
F.
Özel
,
D.
Psaltis
, and
I.
Natarajan
, “
Topological data analysis of black hole images
,”
Phys. Rev. D
106
,
023017
(
2022
).
61.
M.
Gidea
and
Y.
Katz
, “
Topological data analysis of financial time series: Landscapes of crashes
,”
Physica A
491
,
820
834
(
2017
).
62.
P. T.-W.
Yen
and
S. A.
Cheong
, “
Using topological data analysis (TDA) and persistent homology to analyze the stock markets in Singapore and Taiwan
,”
Front. Phys.
9
,
572216
(
2021
).
63.
F.
Motta
,
Topological Data Analysis: Developments and Applications
(
Springer International Publishing
,
2018
), pp. 369–391.
64.
H.
Morita
,
M.
Inatsu
, and
H.
Kokubu
, “
Topological computation analysis of meteorological time-series data
,”
SIAM J. Appl. Dyn. Syst.
18
,
1200
1222
(
2019
).
65.
M.
Feng
and
M. A.
Porter
, “
Spatial applications of topological data analysis: Cities, snowflakes, random structures, and spiders spinning under the influence
,”
Phys. Rev. Res.
2
,
033426
(
2020
).
66.
A.
Hickok
,
B.
Jarman
,
M.
Johnson
,
J.
Luo
, and
M. A.
Porter
, “
Persistent homology for resource coverage: A case study of access to polling sites
,”
SocArXiv
2206.04834 (
2022
).
67.
B. J.
Stolz
,
H. A.
Harrington
, and
M. A.
Porter
, “
Persistent homology of time-dependent functional networks constructed from coupled time series
,”
Chaos
27
,
047410
(
2017
).
68.
A.
Santoro
,
F.
Battiston
,
G.
Petri
, and
E.
Amico
, “
Unveiling the higher-order organization of multivariate time series
,”
Nat. Phys.
19
,
221
229
(
2023
).
69.
F.
Battiston
,
A.
Barrat
,
G.
Bianconi
,
G.
Ferraz de Arruda
,
B.
Franceschiello
,
I.
Iacopini
,
S.
Kéfi
,
V.
Latora
,
Y.
Moreno
,
M. M.
Murray
,
T. P.
Peixoto
,
F.
Vaccarino
, and
G.
Petri
, “
The physics of higher-order interactions in complex systems
,”
Nat. Phys.
17
,
1093
1098
(
2021
).
70.
R.
Sevilla-Escoboza
and
J. M.
Buldú
, “
Synchronization of networks of chaotic oscillators: Structural and dynamical datasets
,”
Data Brief
7
,
1185
1189
(
2016
).
71.
I.
Sendiña-Nadal
and
C.
Letellier
, “
Observability analysis and state reconstruction for networks of nonlinear systems
,”
Chaos
32
,
083109
(
2022
).
72.
F. A.
Rodrigues
,
T. K. D.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
73.
A.
Arenas
,
A.
Díaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
74.
J.-P.
Lachaux
,
E.
Rodriguez
,
J.
Martinerie
, and
F. J.
Varela
, “
Measuring phase synchrony in brain signals
,”
Hum. Brain Mapp.
8
,
194
208
(
1999
).
75.
R.
Ghrist
, “
Barcodes: The persistent topology of data
,”
Bull. Am. Math. Soc.
45
,
61
75
(
2008
).
76.
E.
Edelsbrunner
and
J.
Harer
,
Computational Topology: An Introduction
(
American Mathematical Society
,
2010
).
77.
N.
Otter
,
M.
Porter
,
U.
Tillmann
,
P.
Grindrod
, and
H.
Harrington
, “
A roadmap for the computation of persistent homology
,”
EPJ Data Sci.
6
,
2193
1127
(
2017
).
78.
A.
Myers
,
E.
Munch
, and
F. A.
Khasawneh
, “
Persistent homology of complex networks for dynamic state detection
,”
Phys. Rev. E
100
,
022314
(
2019
).
79.
U.
Bauer
, “
Ripser: Efficient computation of Vietoris-Rips persistence barcodes
,”
J. Appl. Comput. Topol.
5
,
391
423
(
2021
).
80.
C.
Tralie
,
N.
Saul
, and
R.
Baron
, “
Ripser.py: A lean persistent homology library for python
,”
J. Open Source Softw.
3
,
925
(
2018
).
81.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
82.
H.
Hong
,
M. Y.
Choi
, and
B. J.
Kim
, “
Synchronization on small-world networks
,”
Phys. Rev. E
65
,
026139
(
2002
).
You do not currently have access to this content.