Ordinal patterns serve as a robust symbolic transformation technique, enabling the unveiling of latent dynamics within time series data. This methodology involves constructing histograms of patterns, followed by the calculation of both entropy and statistical complexity—an avenue yet to be fully understood in terms of its statistical properties. While asymptotic results can be derived by assuming a multinomial distribution for histogram proportions, the challenge emerges from the non-independence present in the sequence of ordinal patterns. Consequently, the direct application of the multinomial assumption is questionable. This study focuses on the computation of the asymptotic distribution of permutation entropy, considering the inherent patterns’ correlation structure. Furthermore, the research delves into a comparative analysis, pitting this distribution against the entropy derived from a multinomial law. We present simulation algorithms for sampling time series with prescribed histograms of patterns and transition probabilities between them. Through this analysis, we better understand the intricacies of ordinal patterns and their statistical attributes.

1.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
(
17
),
174102
(
2002
).
2.
J. M.
Amigó
and
O. A.
Rosso
, “
Ordinal methods: Concepts, applications, new developments, and challenges—In memory of Karsten Keller (1961–2022)
,”
Chaos
33
(
8
),
080401
(
2023
).
3.
E.
Chagas
,
A. C.
Frery
,
O. A.
Rosso
, and
H. S.
Ramos
, “
Analysis and classification of SAR textures using information theory
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
14
,
663
675
(
2021
).
4.
I.
Leyva
,
J.
Martínez
,
C.
Masoller
,
O.
Rosso
, and
M.
Zanin
, “
20 years of ordinal patterns: Perspectives and challenges
,”
Europhys. Lett.
138
(
3
),
31001
(
2022
).
5.
E. T. C.
Chagas
,
M.
Queiroz-Oliveira
,
O. A.
Rosso
,
H. S.
Ramos
,
C. G. S.
Freitas
, and
A. C.
Frery
, “
White noise test from ordinal patterns in the entropy-complexity plane
,”
Int. Stat. Rev.
90
,
374
396
(
2022
).
6.
A. A.
Rey
,
A. C.
Frery
,
M.
Lucini
,
J.
Gambini
,
E. T. C.
Chagas
, and
H. S.
Ramos
, “
Asymptotic distribution of certain types of entropy under the multinomial law
,”
Entropy
25
(
5
),
734
(
2023
).
7.
H.
Elsinger
, “Independence tests based on symbolic dynamics,” Technical report 165, Oesterreichische Nationalbank (OeNB), Vienna, 2010.
8.
A. M.
Yamashita Rios de Sousa
and
J.
Hlinka
, “
Assessing serial dependence in ordinal patterns processes using chi-squared tests with application to EEG data analysis
,”
Chaos
32
(
7
),
073126
(
2022
).
9.
E. L.
Lehmann
and
G.
Casella
,
Theory of Point Estimation
(
Springer Science & Business Media
,
2006
).
10.
E. T. C.
Chagas
,
A. C.
Frery
,
J.
Gambini
,
M. M.
Lucini
,
H. S.
Ramos
, and
A. A.
Rey
, “
Statistical properties of the entropy from ordinal patterns
,”
Chaos
32
,
113118
(
2022
).
11.
A. L.
Goldberger
,
L. A. N.
Amaral
,
L.
Glass
,
J. M.
Hausdorff
,
P. Ch.
Ivanov
,
R. G.
Mark
,
J. E.
Mietus
,
G. B.
Moody
,
C.-K.
Peng
, and
H.
Eugene Stanley
, “
PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
,”
Circulation
101
(
23
),
e215
e220
(
2000
).
12.
G. B.
Moody
and
R. G.
Mark
, “
The impact of the MIT-BIH arrhythmia database
,”
IEEE Eng. Med. Biol. Mag.
20
(
3
),
45
50
(
2001
).
13.
A. A.
Rey
,
A. C.
Frery
,
J.
Gambini
, and
M. M.
Lucini
, “
Comparison Asymptotic Models Ordinal Patterns
,”
GitLab repository
, https://gitlab.ecs.vuw.ac.nz/freryal/comparison-asymptotic-models-ordinal-patterns (2023).
You do not currently have access to this content.