Heteroclinic dynamics provide a suitable framework for describing transient dynamics such as cognitive processes in the brain. It is appreciated for being well reproducible and at the same time highly sensitive to external input. It is supposed to capture features of switching statistics between metastable states in the brain. Beyond the high sensitivity, a further desirable feature of these dynamics is to enable a fast adaptation to new external input. In view of this, we analyze relaxation times of heteroclinic motion toward a new resting state, when oscillations in heteroclinic networks are arrested by a quench of a bifurcation parameter from a parameter regime of oscillations to a regime of equilibrium states. As it turns out, the relaxation is underdamped and depends on the nesting of the attractor space, the size of the attractor’s basin of attraction, the depth of the quench, and the level of noise. In the case of coupled heteroclinic units, it depends on the coupling strength, the coupling type, and synchronization between different units. Depending on how these factors are combined, finite relaxation times may support or impede a fast switching to new external input. Our results also shed some light on the discussion of how the stability of a system changes with its complexity.

1.
V.
Afraimovich
,
I.
Tristan
,
R.
Huerta
, and
M. I.
Rabinovich
, “
Winnerless competition principle and prediction of the transient dynamics in a Lotka–Volterra model
,”
Chaos
18
,
043103
(
2008
).
2.
F. H.
Busse
and
K.
Heikes
, “
Convection in a rotating layer: A simple case of turbulence
,”
Science
208
,
173
175
(
1980
).
3.
A.
Szolnoki
,
M.
Mobilia
,
L.-L.
Jiang
,
B.
Szczesny
,
A. M.
Rucklidge
, and
M.
Perc
, “
Cyclic dominance in evolutionary games: A review
,”
J. R. Soc. Interface
11
,
20140735
(
2014
).
4.
M. A.
Nowak
and
K.
Sigmund
, “
Bacterial game dynamics
,”
Nature
418
,
138
139
(
2002
).
5.
M. I.
Rabinovich
,
V. S.
Afraimovich
,
C.
Bick
, and
P.
Varona
, “
Information flow dynamics in the brain
,”
Phys. Life Rev.
9
,
51
73
(
2012
).
6.
V.
Afraimovich
,
X.
Gong
, and
M.
Rabinovich
, “
Sequential memory: Binding dynamics
,”
Chaos
25
,
103118
(
2015
).
7.
M. I.
Rabinovich
,
I.
Tristan
, and
P.
Varona
, “
Hierarchical nonlinear dynamics of human attention
,”
Neurosci. Biobehav. Rev.
55
,
18
35
(
2015
).
8.
P.
Varona
and
M. I.
Rabinovich
, “
Hierarchical dynamics of informational patterns and decision-making
,”
Proc. R. Soc. B: Biol. Sci.
283
,
20160475
(
2016
).
9.
M. I.
Rabinovich
,
V. S.
Afraimovich
, and
P.
Varona
, “
Heteroclinic binding
,”
Dyn. Syst.
25
,
433
442
(
2010
).
10.
M. I.
Rabinovich
,
P.
Varona
,
I.
Tristan
, and
V. S.
Afraimovich
, “
Chunking dynamics: Heteroclinics in mind
,”
Front. Comput. Neurosci.
8
,
22
(
2014
).
11.
V.
Kirk
and
M.
Silber
, “
A competition between heteroclinic cycles
,”
Nonlinearity
7
,
1605
(
1994
).
12.
P.
Ashwin
and
M.
Field
, “
Heteroclinic networks in coupled cell systems
,”
Arch. Ration. Mech. Anal.
148
,
107
143
(
1999
).
13.
P.
Ashwin
and
C.
Postlethwaite
, “
Designing heteroclinic and excitable networks in phase space using two populations of coupled cells
,”
J. Nonlinear Sci.
26
,
345
364
(
2016
).
14.
M.
Voit
and
H.
Meyer-Ortmanns
, “
Dynamics of nested, self-similar winnerless competition in time and space
,”
Phys. Rev. Res.
1
,
023008
(
2019
).
15.
E.
Tognoli
and
J. S.
Kelso
, “
The metastable brain
,”
Neuron
81
,
35
48
(
2014
).
16.
M. I.
Rabinovich
,
R.
Huerta
,
P.
Varona
, and
V. S.
Afraimovich
, “
Generation and reshaping of sequences in neural systems
,”
Biol. Cybern.
95
,
519
536
(
2006
).
17.
M. I.
Rabinovich
and
P.
Varona
, “
Robust transient dynamics and brain functions
,”
Front. Comput. Neurosci.
5
,
24
(
2011
).
18.
M. I.
Rabinovich
and
M.
Muezzinoglu
, “
Nonlinear dynamics of the brain: Emotion and cognition
,”
Phys.-Usp.
53
,
357
(
2010
).
19.
M. I.
Rabinovich
,
M. A.
Zaks
, and
P.
Varona
, “
Sequential dynamics of complex networks in mind: Consciousness and creativity
,”
Phys. Rep.
883
,
1
32
(
2020
).
20.
V. S.
Afraimovich
,
T. R.
Young
, and
M. I.
Rabinovich
, “
Hierarchical heteroclinics in dynamical model of cognitive processes: Chunking
,”
Int. J. Bifurcation Chaos
24
,
1450132
(
2014
).
21.
M.
Voit
and
H.
Meyer-Ortmanns
, “
A hierarchical heteroclinic network: Controlling the time evolution along its paths
,”
Eur. Phys. J. Spec. Top.
227
,
1101
1115
(
2018
).
22.
M.
Voit
and
H.
Meyer-Ortmanns
, “
Predicting the separation of time scales in a heteroclinic network
,”
Appl. Math. Nonlinear Sci.
4
,
279
288
(
2019
).
23.
M.
Mölle
and
J.
Born
, “
Slow oscillations orchestrating fast oscillations and memory consolidation
,”
Prog. Brain Res.
193
,
93
110
(
2011
).
24.
M.
Saleh
,
J.
Reimer
,
R.
Penn
,
C. L.
Ojakangas
, and
N. G.
Hatsopoulos
, “
Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues
,”
Neuron
65
,
461
471
(
2010
).
25.
M.
Voit
and
H.
Meyer-Ortmanns
, “
Emerging criticality at bifurcation points in heteroclinic dynamics
,”
Phys. Rev. Res.
2
,
043097
(
2020
).
26.
B.
Thakur
and
H.
Meyer-Ortmanns
, “
Heteroclinic units acting as pacemakers: Entrained dynamics for cognitive processes
,”
J. Phys.: Complex.
3
,
035003
(
2022
).
27.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
, “
Collective nonlinear dynamics and self-organization in decentralized power grids
,”
Rev. Mod. Phys.
94
,
015005
(
2022
).
28.
T.
Brecelj
and
T.
Petrič
, “
Stable heteroclinic channel networks for physical human–humanoid robot collaboration
,”
Sensors
23
,
1396
(
2023
).
29.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J.
Collins
, “
Symmetry in locomotor central pattern generators and animal gaits
,”
Nature
401
,
693
695
(
1999
).
30.
K. M.
Shaw
,
D. N.
Lyttle
,
J. P.
Gill
,
M. J.
Cullins
,
J. M.
McManus
,
H.
Lu
,
P. J.
Thomas
, and
H. J.
Chiel
, “
The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior
,”
J. Comput. Neurosci.
38
,
25
51
(
2015
).
You do not currently have access to this content.