The oceans act as major carbon dioxide sinks, greatly influencing global climate. Knowing how these sinks evolve would advance our understanding of climate dynamics. We construct a conceptual box model for the oceans to predict the temporal and spatial evolution of CO 2 of each ocean, and the time-evolution of their salinities. Surface currents, deep water flows, freshwater influx, and major fluvial contributions are considered, as also the effect of changing temperature with time. We uncover the strongest carbon uptake to be from the Southern Ocean, followed by the Atlantic. The North Atlantic evolves into the most saline ocean with time and increasing temperatures. The Amazon River is found to have significant effects on CO 2 sequestration trends. An alternative flow scenario of the Amazon is investigated, giving interesting insights into the global climate in the Miocene epoch.

1.
C. L.
Sabine
et al., “
The oceanic sink for anthropogenic CO 2
,”
Science
305
,
367
371
(
2004
).
2.
S. E.
Mikaloff Fletcher
et al., “
Inverse estimates of anthropogenic CO 2 uptake, transport, and storage by the ocean
,”
Global Biogeochem. Cycles
20
,
GB2002
(
2006
).
3.
S.
Rahmstorf
, “
The concept of the thermohaline circulation
,”
Nature
421
,
699
(
2003
).
4.
T.
DeVries
,
M.
Holzer
, and
F.
Primeau
, “
Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning
,”
Nature
542
,
215
218
(
2017
).
5.
M. C.
Long
et al., “
Strong Southern Ocean carbon uptake evident in airborne observations
,”
Science
374
,
1275
1280
(
2021
).
6.
N.
Gruber
,
P.
Landschützer
, and
N. S.
Lovenduski
, “
The variable southern ocean carbon sink
,”
Annu. Rev. Mar. Sci.
11
,
16.1
16.28
(
2018
).
7.
R. F.
Keeling
, “
Recording earth’s vital signs
,”
Science
319
,
1771
1772
(
2008
).
8.
H.
Stommel
, “
Thermohaline convection with two stable regimes of flow
,”
Tellus
13
,
224
230
(
1961
).
9.
D. B.
Haidvogel
and
F. O.
Bryan
, “Ocean general circulation and modeling,” in Climate System Modeling, edited by K. E. Trenberth (Cambridge University Press, 1992), Chap. 11.
10.
J.
Sprintall
,
S. E.
Wijfells
,
R.
Molcard
, and
I.
Jaya
, “
Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006
,”
J. Geophys. Res. Oceans
114
,
19
(
2009
).
11.
L.
Stramma
and
R. G.
Peterson
, “
The south atlantic current
,”
J. Phys. Oceanogr.
20
,
846
859
(
1990
).
12.
W. E.
Johns
,
T. N.
Lee
,
F. A.
Schott
,
R. J.
Zantropp
, and
R. H.
Evans
, “
The north Brazil current retroflection—Seasonal structure and eddy variability
,”
J. Geophys. Res.
95
,
22103
22120
, https://doi.org/10.1029/JC095iC12p22103 (
1990
).
13.
R. L.
Molinari
, “
Observations of eastward currents in the tropical south Atlantic ocean: 1978–1980
,”
J. Geophys. Res.
87
,
9707
9714
, https://doi.org/10.1029/JC087\break iC12p09707 (
1982
).
14.
K.
Drushka
,
W. E.
Asher
,
J.
Sprintall
,
S. T.
Gille
, and
C.
Hoang
, “
Global patterns of submesoscale surface salinity variability
,”
J. Phys. Oceanography
49
,
1669
1685
(
2019
).
15.
O. M.
Johannessen
,
M.
Miles
, and
E.
Bjorgo
, “
Decreases in Arctic sea ice extent and area 1978–1994
,”
Nature
376
,
126
127
(
1995
).
16.
IPCC, 2013: “Summary for policymakers,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al. (Cambridge University Press, Cambridge, 2013).
17.
A.
Gupta
,
Large Rivers: Geomorphology and Management
(
John Wiley & Sons
,
2008
), p.
31
. ISBN: 978-0-470-84987-3.
18.
K.
Fennig
,
A.
Andersson
,
S.
Bakan
,
C.-P.
Klepp
, and
M.
Schroder
, “Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS 3.2—monthly means/6-hourly composites. satellite application facility on climate monitoring.” http://dx.doi.org/10.5676/EUM_SAF_CM/HOAPS/V001 (2012).
19.
R.
Wanninkhof
and
J.
Trinanes
, “
The effect of changing wind speeds on gas transfer and its effect on global air-sea CO 2 fluxes
,”
Global Biogeochem. Cycles
31
,
961
974
(
2017
).
20.
R.
Wanninkhof
, “
Relationship between wind speed and gas exchange over the ocean revisited
,”
Limnol. Oceanogr. Methods
12
,
351
362
(
2014
).
21.
R. F.
Weiss
, “
Carbon dioxide in water and seawater: The solubility of a non-ideal gas
,”
Mar. Chem.
2
,
203
215
(
1974
).
22.
S. M.
Libes
,
Introduction to Marine Biogeochemistry
,
2nd ed.
(
Academic Press
,
2009
).
23.
K. G.
Schulz
,
U.
Riebesell
,
B.
Rost
,
S.
Thoms
, and
R. E.
Zeebe
, “
Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems
,”
Mar. Chem.
100
,
53
65
(
2006
).
24.
Guide to Best Practices for Ocean CO 2 Measurements, edited by A. G. Dickson, C. L. Sabine, and J. R. Christian (PICES Special Publication 3, 2007), p. 191.
25.
A. G.
Dickson
, The carbon dioxide system in seawater: Equilibrium chemistry and measurements. Guide to Best Practices for Ocean Acidification Research and Data Reporting, pp. 17–40 (2010).
26.
M. J.
Mitchell
,
O. E.
Jensen
,
K.
Andrew Cliffe
, and
M. A.
Mercedes Maroto-Valer
, “
Model of carbon dioxide dissolution and mineral carbonation kinetics
,”
Proc. R. Soc. A
466
,
1265
1290
(
2010
).
27.
L. W.
Diamond
and
N. N.
Akinfiev
, “
Solubility of CO 2 in water from 1.5 to 100  °C and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling
,”
Fluid Phase Equilibria
208
,
265
(
2003
).
28.
P.
Landschützer
,
N.
Gruber
,
D. C. E.
Bakker
, and
U.
Schuster
,
An observation-based global monthly gridded sea surface pCO2 product from 1998 through 2011 and its monthly climatology
, see http://cdiac.ornl.gov/ftp/oceans/spco2_1998_2011_ETH_SOM-FFN. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.
29.
H.
Alkhayuon
,
P.
Ashwin
,
L. C.
Jackson
,
C.
Quinn
, and
R. A.
Wood
, “
Basin bifurcations, oscillatory instability and rate-induced thresholds for atlantic meridional overturning circulation in a global oceanic box model
,”
Proc. R. Soc. A
475
,
20190051
(
2019
).
30.
M.
Ishii
,
A.
Shouji
,
S.
Sugimoto
, and
T.
Matsumoto
, “
Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the kobe collection
,”
Int. J. Climatol.
25
,
865
879
(
2005
), COBE Sea Surface Temperature data provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov.
32.
A.
Santoso
and
M. H.
England
, “
Antarctic intermediate water circulation and variability in a coupled climate model
,”
J. Phys. Oceanogr.
34
,
2160
2179
(
2004
).
33.
A.
Santoso
,
M. H.
England
, and
A. C.
Hirst
, “
Circumpolar deep water circulation and variability in a coupled climate model
,”
J. Phys. Oceanogr.
36
,
1523
1552
(
2006
).
34.
A.
Santoso
and
M. H.
England
, “
Antarctic bottom water variability in a coupled climate model
,”
J. Phys. Oceanogr.
38
,
1870
1893
(
2008
).
35.
G. D.
McCarthy
et al., “
On the sub-decadal variability of south atlantic antarctic intermediate water
,”
Geophys. Res. Lett.
39
,
L10605
(
2012
).
36.
M.
Latif
,
T.
Martin
, and
W.
Park
, “
Southern ocean sector centennial climate variability and recent decadal trends
,”
J. Climate
26
,
7767
7782
(
2013
).
37.
T.
Martin
,
W.
Park
, and
M.
Latif
, “
Multi-centennial variability controlled by southern ocean convection in the Kiel climate model
,”
Clim. Dyn.
40
,
2005
2022
(
2013
).
38.
W.
Park
and
M.
Latif
, “
Multidecadal and multicentennial variability of the meridional overturning circulation
,”
Geophys. Res. Lett.
35
,
L22703
, https://doi.org/10.1029/2008GL035779 (
2008
).
39.
P. J.
Menck
,
J.
Heitzig
,
R.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
,
89
92
(
2013
).
40.
T.
Takahashi
et al., “
Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans
,”
Deep-Sea Res. II
56
,
554
577
(
2009
).
41.
J.
Marotzke
, “
Abrupt climate change and the thermohaline circulation: Mechanisms and predictability
,”
Proc. Natl. Acad. Sci. U.S.A.
97
,
1347
1350
(
2000
).
42.
F.
Bryan
, “
High-latitude salinity effects and interhemispheric thermohaline circulations
,”
Nature
323
,
301
304
(
1986
).
43.
R. W.
Mapes
,
A. C. R.
Nogueira
,
D. S.
Coleman
, and
A. M.
Leguizamon Vega
, “
Evidence for a continental scale inversion in the Amazon basin since the late cretaceous
,”
Geol. Soc. Am. Abs. Progr.
38
(
7
),
518
(
2006
).
44.
R. W.
Mapes
, see https://doi.org/10.17615/s09s-f385 for “Past and present provenance of the Amazon river” (2009).
45.
G. E.
Shephard
,
R. D.
Müller
,
L.
Liu
, and
M.
Gurnis
, “
Miocene drainage reversal of the amazon river driven by plate–mantle interaction
,”
Nat. Geosci.
3
,
870
875
(
2010
).
46.
K.
Lawrence
,
H.
Coxall
,
S.
Sosdian
, and
M.
Steinthorsdottir
, Miocene temperature portal. Dataset version 1. Bolin Centre Database. https://doi.org/10.17043/miocene-temperature-portal-1 (2021).
47.
R.
Revelle
and
H. E.
Suess
, “
Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2, during the past decades
,”
Tellus
9
,
18
27
(
1957
).
48.
W. S.
Broecker
, “
Glacial to interglacial changes in ocean chemistry
,”
Prog. Oceanog.
11
,
151
197
(
1982
).
49.
T.
DeVries
, “
The ocean carbon cycle
,”
Annu. Rev. Environ. Resour.
47
,
317
341
(
2022
).
50.
C.
Martinot
et al., “
Drivers of late Miocene tropical sea surface cooling: A new perspective from the equatorial Indian Ocean
,”
Earth and Space Science Open Archive Paleoceanography and Paleoclimatology
,
37
, e2021PA004407 (
2022
).
51.
B. C.
O’Neill
et al., “
The scenario model intercomparison project (ScenarioMIP) for CMIP6
,”
Geosci. Model Dev.
9
,
3461
3482
(
2016
).
You do not currently have access to this content.