Teleconnections refer to long-range climate system linkages occurring over typically thousands of kilometers. Generally speaking, most teleconnections are attributed to the transmission of energy and propagation of waves although the physical complexity and characteristics behind these waves are not fully understood. To address this knowledge gap, we develop a climate network-based approach to reveal their directions and distribution patterns, evaluate the intensity of teleconnections, and identify sensitive regions using global daily surface air temperature data. Our results reveal a stable average intensity distribution pattern for teleconnections across a substantial spatiotemporal scale from 1948 to 2021, with the extent and intensity of teleconnection impacts increasing more prominently in the Southern Hemisphere over the past 37 years. Furthermore, we pinpoint climate-sensitive regions, such as southeastern Australia, which are likely to face increasing impacts due to global warming. Our proposed method offers new insights into the dynamics of global climate patterns and can inform strategies to address climate change and extreme events.

1.
H. J.
Schellnhuber
, “
‘Earth system’ analysis and the second Copernican revolution
,”
Nature
402
,
C19
C23
(
1999
).
2.
W.
Steffen
,
K.
Richardson
,
J.
Rockström
,
H. J.
Schellnhuber
,
O. P.
Dube
,
S.
Dutreuil
,
T. M.
Lenton
, and
J.
Lubchenco
, “
The emergence and evolution of earth system science
,”
Nat. Rev. Earth Environ.
1
,
54
63
(
2020
).
3.
Y.
Li
,
W.
Lu
,
H.
Xiao
,
S.
Zhang
, and
Y.
Li
, “
Dip-scanning coherence algorithm using eigenstructure analysis and supertrace technique
,”
Geophysics
71
,
V61
V66
, https://doi.org/10.1190/1.2194899 (
2006
).
4.
S.
Nigam
and
S.
Baxter
, “
General circulation of the atmosphere—Teleconnections
,” in
Encyclopedia of Atmospheric Sciences
, 2nd edition, edited by G. R. North, J. Pyle, and F. Zhang (Academic Press,
2015
), pp.
90–109
.
5.
J.
Bjerknes
, “
Atmospheric teleconnections from the equatorial pacific
,”
Mon. Weather Rev.
97
,
163
172
(
1969
).
6.
J. M.
Wallace
and
D. S.
Gutzler
, “
Teleconnections in the geopotential height field during the northern hemisphere winter
,”
Mon. Weather Rev.
109
,
784
812
(
1981
).
7.
H.
Von Storch
and
F. W.
Zwiers
,
Statistical Analysis in Climate Research
(
Cambridge University Press
,
2002
).
8.
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
, “
Complex networks reveal global pattern of extreme-rainfall teleconnections
,”
Nature
566
,
373
377
(
2019
).
9.
Y.
Mao
,
Y.
Zou
,
L. M.
Alves
,
E. E. N.
Macau
,
A. S.
Taschetto
,
A.
Santoso
, and
J.
Kurths
, “
Phase coherence between surrounding oceans enhances precipitation shortages in northeast Brazil
,”
Geophys. Res. Lett.
49
,
e2021GL097647
, https://doi.org/10.1029/2021GL097647 (
2022
).
10.
Z.
Liu
and
M.
Alexander
, “
Atmospheric bridge, oceanic tunnel, and global climatic teleconnections
,”
Rev. Geophys.
45
(2),
1
, https://doi.org/10.1029/2005RG000172 (
2007
).
11.
J.
Kurths
,
A.
Agarwal
,
R.
Shukla
,
N.
Marwan
,
M.
Rathinasamy
,
L.
Caesar
,
R.
Krishnan
, and
B.
Merz
, “
Unravelling the spatial diversity of indian precipitation teleconnections via a non-linear multi-scale approach
,”
Nonlin. Process. Geophys.
26
,
251
266
, https://doi.org/10.5194/npg-26-251-2019 (
2019
).
12.
A.
Agarwal
,
L.
Caesar
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Network-based identification and characterization of teleconnections on different scales
,”
Sci. Rep.
9
,
8808
(
2019
).
13.
Y.
Wang
,
A.
Gozolchiani
,
Y.
Ashkenazy
,
Y.
Berezin
,
O.
Guez
, and
S.
Havlin
, “
Dominant imprint of rossby waves in the climate network
,”
Phys. Rev. Lett.
111
,
138501
(
2013
).
14.
D.
Zhou
,
A.
Gozolchiani
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Teleconnection paths via climate network direct link detection
,”
Phys. Rev. Lett.
115
,
268501
(
2015
).
15.
J.
Hlinka
,
D.
Hartman
,
M.
Vejmelka
,
D.
Novotná
, and
M.
Paluš
, “
Non-linear dependence and teleconnections in climate data: Sources, relevance, nonstationarity
,”
Clim. Dynam.
42
,
1873
1886
(
2014
).
16.
V.
Petoukhov
,
S.
Rahmstorf
,
S.
Petri
, and
H. J.
Schellnhuber
, “
Quasiresonant amplification of planetary waves and recent northern hemisphere weather extremes
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
5336
5341
(
2013
).
17.
H.
Teng
,
G.
Branstator
,
H.
Wang
,
G. A.
Meehl
, and
W. M.
Washington
, “
Probability of US heat waves affected by a subseasonal planetary wave pattern
,”
Nat. Geosci.
6
,
1056
1061
(
2013
).
18.
A.
Agarwal
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Quantifying the roles of single stations within homogeneous regions using complex network analysis
,”
J. Hydrol.
563
,
802
810
(
2018
).
19.
N.
Ying
,
D.
Zhou
,
Z. G.
Han
,
Q. H.
Chen
,
Q.
Ye
, and
Z. G.
Xue
, “
Rossby waves detection in the CO 2 and temperature multilayer climate network
,”
Geophys. Res. Lett.
47
,
e2019GL086507
, https://doi.org/10.1029/2019GL086507 (
2020
).
20.
Y.
Zhang
,
J.
Fan
,
X.
Chen
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Significant impact of rossby waves on air pollution detected by network analysis
,”
Geophys. Res. Lett.
46
,
12476
12485
, https://doi.org/10.1029/2019GL084649 (
2019
).
21.
C.
Deser
,
M. A.
Alexander
,
S.-P.
Xie
, and
A. S.
Phillips
, “
Sea surface temperature variability: Patterns and mechanisms
,”
Annu. Rev. Marine Sci.
2
,
115
143
(
2010
).
22.
H. A.
Dijkstra
,
Nonlinear Climate Dynamics
(
Cambridge University Press
,
2013
).
23.
K. C.
Mo
and
R. W.
Higgins
, “
The pacific–south american modes and tropical convection during the southern hemisphere winter
,”
Mon. Weather Rev.
126
,
1581
1596
(
1998
).
24.
A.
Gershunov
and
T. P.
Barnett
, “
Interdecadal modulation of ENSO teleconnections
,”
Bull. Am. Meteorol. Soc.
79
,
2715
2726
(
1998
).
25.
M. A.
Alexander
,
I.
Bladé
,
M.
Newman
,
J. R.
Lanzante
,
N.-C.
Lau
, and
J. D.
Scott
, “
The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans
,”
J. Clim.
15
,
2205
2231
(
2002
).
26.
E. K. M.
Chang
, “
Downstream development of baroclinic waves as inferred from regression analysis
,”
J. Atmos. Sci.
50
,
2038
2053
(
1993
).
27.
E. K. M.
Chang
and
D. B.
Yu
, “
Characteristics of wave packets in the upper troposphere. Part I: Northern hemisphere winter
,”
J. Atmos. Sci.
56
,
1708
1728
(
1999
).
28.
E. K. M.
Chang
, “
Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations
,”
J. Atmos. Sci.
56
,
1729
1747
(
1999
).
29.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
30.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
31.
R.
Cohen
and
S.
Havlin
,
Complex Networks: Structure, Robustness and Function
(
Cambridge University Press
,
2010
).
32.
M.
Newman
,
Networks: An Introduction
,
1st ed.
(
Oxford University Press
,
2010
).
33.
J.
Fan
,
J.
Meng
,
Y.
Ashkenazy
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Network analysis reveals strongly localized impacts of El Niño
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
7543
7548
(
2017
).
34.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
35.
D.
Brockmann
and
D.
Helbing
, “
The hidden geometry of complex, network-driven contagion phenomena
,”
Science
342
,
1337
1342
(
2013
).
36.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
979
(
2015
).
37.
F.
Morone
and
H. A.
Makse
, “
Influence maximization in complex networks through optimal percolation
,”
Nature
524
,
65
68
(
2015
).
38.
J.
Fan
,
J.
Meng
,
J.
Ludescher
,
X.
Chen
,
Y.
Ashkenazy
,
J.
Kurths
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Statistical physics approaches to the complex earth system
,”
Phys. Rep.
896
,
1
84
(
2021
).
39.
J.
Gómez-Gardeñes
,
D.
Soriano-Paños
, and
A.
Arenas
, “
Critical regimes driven by recurrent mobility patterns of reaction–diffusion processes in networks
,”
Nat. Phys.
14
,
391
395
(
2018
).
40.
J.
Fan
,
J.
Meng
,
Y.
Ashkenazy
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Climate network percolation reveals the expansion and weakening of the tropical component under global warming
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E12128
E12134
(
2018
).
41.
Y.
Zou
,
R. V.
Donner
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods
,”
Chaos
20
(4),
043130
(
2010
).
42.
A.
Bashan
,
R. P.
Bartsch
,
J. W.
Kantelhardt
,
S.
Havlin
, and
P. C.
Ivanov
, “
Network physiology reveals relations between network topology and physiological function
,”
Nat. Commun.
3
,
702
(
2012
).
43.
C. M.
Schneider
,
A. A.
Moreira
,
J. S.
Andrade
,
S.
Havlin
, and
H. J.
Herrmann
, “
Mitigation of malicious attacks on networks
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
3838
3841
(
2011
).
44.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A
373
,
4246
4254
(
2009
).
45.
Y.
Zou
,
T.
Pereira
,
M.
Small
,
Z.
Liu
, and
J.
Kurths
, “
Basin of attraction determines hysteresis in explosive synchronization
,”
Phys. Rev. Lett.
112
,
114102
(
2014
).
46.
A. A.
Tsonis
,
K. L.
Swanson
, and
P. J.
Roebber
, “
What do networks have to do with climate?
,”
Bull. Am. Meteorol. Soc.
87
,
585
596
(
2006
).
47.
A. A.
Tsonis
,
K.
Swanson
, and
S.
Kravtsov
, “
A new dynamical mechanism for major climate shifts
,”
Geophys. Res. Lett.
34
(13),
L13705
, https://doi.org/10.1029/2007GL030288 (
2007
).
48.
K.
Yamasaki
,
A.
Gozolchiani
, and
S.
Havlin
, “
Climate networks around the globe are significantly affected by el niño
,”
Phys. Rev. Lett.
100
,
228501
(
2008
).
49.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J. Special Top.
174
,
157
179
(
2009
).
50.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
The backbone of the climate network
,”
Europhys. Lett.
87
,
48007
(
2009
).
51.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks—A novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
52.
D.
Mukhin
,
A.
Hannachi
,
T.
Braun
, and
N.
Marwan
, “
Revealing recurrent regimes of mid-latitude atmospheric variability using novel machine learning method
,”
Chaos
32
(11),
113105
(
2022
).
53.
J.
Ludescher
,
A.
Gozolchiani
,
M. I.
Bogachev
,
A.
Bunde
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Improved El Niño forecasting by cooperativity detection
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
11742
11745
(
2013
).
54.
N.
Boers
,
B.
Bookhagen
,
H. M. J.
Barbosa
,
N.
Marwan
,
J.
Kurths
, and
J. A.
Marengo
, “
Prediction of extreme floods in the eastern central Andes based on a complex networks approach
,”
Nat. Commun.
5
,
5199
(
2014
).
55.
J.
Meng
,
J.
Fan
,
Y.
Ashkenazy
,
A.
Bunde
, and
S.
Havlin
, “
Forecasting the magnitude and onset of el niño based on climate network
,”
New J. Phys.
20
,
043036
(
2018
).
56.
K.
Steinhaeuser
,
N. V.
Chawla
, and
A. R.
Ganguly
, “An exploration of climate data using complex networks,” in Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data, SensorKDD ’09 (Association for Computing Machinery, New York, 2009), pp. 23–31.
57.
K.
Steinhaeuser
,
N. V.
Chawla
, and
A. R.
Ganguly
, “
Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science
,”
Stat. Analysis Data Mining: ASA Data Sci. J.
4
,
497
511
(
2011
).
58.
M.
Barreiro
,
A. C.
Marti
, and
C.
Masoller
, “
Inferring long memory processes in the climate network via ordinal pattern analysis
,”
Chaos
21
(1),
013101
(
2011
).
59.
J.
Deza
,
M.
Barreiro
, and
C.
Masoller
, “
Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales
,”
Eur. Phys. J. Special Top.
222
,
511
523
(
2013
).
60.
J.
Ludescher
,
J.
Meng
,
J.
Fan
,
A.
Bunde
, and
H. J.
Schellnhuber
, “Very early warning of a moderate-to-strong El Niño in 2023” arXiv:2301.10763v1.
61.
T.
Liu
,
D.
Chen
,
L.
Yang
,
J.
Meng
,
Z.
Wang
,
J.
Ludescher
,
J.
Fan
,
S.
Yang
,
D.
Chen
,
J.
Kurths
,
X.
Chen
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Teleconnections among tipping elements in the earth system
,”
Nat. Clim. Change
13
,
67
74
(
2023
).
62.
M.
Jusup
,
P.
Holme
,
K.
Kanazawa
,
M.
Takayasu
,
I.
Romić
,
Z.
Wang
,
S.
Geček
,
T.
Lipić
,
B.
Podobnik
,
L.
Wang
,
W.
Luo
,
T.
Klanjšček
,
J.
Fan
,
S.
Boccaletti
, and
M.
Perc
, “
Social physics
,”
Phys. Rep.
948
,
1
148
(
2022
).
63.
J.
Meng
,
J.
Fan
,
J.
Ludescher
,
A.
Agarwal
,
X.
Chen
,
A.
Bunde
,
J.
Kurths
, and
H. J.
Schellnhuber
, “
Complexity-based approach for El Niño magnitude forecasting before the spring predictability barrier
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
177
183
(
2020
).
64.
J.
Zhang
,
J.
Zhou
,
M.
Tang
,
H.
Guo
,
M.
Small
, and
Y.
Zou
, “
Constructing ordinal partition transition networks from multivariate time series
,”
Sci. Rep.
7
,
7795
(
2017
).
65.
J.
Ludescher
,
M.
Martin
,
N.
Boers
,
A.
Bunde
,
C.
Ciemer
,
J.
Fan
,
S.
Havlin
,
M.
Kretschmer
,
J.
Kurths
,
J.
Runge
,
V.
Stolbova
,
E.
Surovyatkina
, and
H. J.
Schellnhuber
, “
Network-based forecasting of climate phenomena
,”
Proc. Natl. Acad. Sci. U.S.A.
118
,
e1922872118
(
2021
).
66.
X.
Wang
,
X.
Han
,
Z.
Chen
,
Q.
Bi
,
S.
Guan
, and
Y.
Zou
, “
Multi-scale transition network approaches for nonlinear time series analysis
,”
Chaos, Solitons Fractals
159
,
112026
(
2022
).
67.
H. A.
Dijkstra
,
E.
Hernández-García
,
C.
Masoller
, and
M.
Barreiro
,
Networks in Climate
(
Cambridge University Press
,
2019
).
68.
J.
Meng
,
J.
Fan
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Percolation framework to describe El Niño conditions
,”
Chaos
27
(3),
035807
(
2017
).
69.
G.
Lancaster
,
D.
Iatsenko
,
A.
Pidde
,
V.
Ticcinelli
, and
A.
Stefanovska
, “
Surrogate data for hypothesis testing of physical systems
,”
Phys. Rep.
748
,
1
60
(
2018
).
70.
K.
Fraedrich
and
H.
Böttger
, “
A wavenumber-frequency analysis of the 500 mb geopotential at 50 °n
,”
J. Atmos. Sci.
35
,
745
750
(
1978
).
71.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
,
Y.
Zhu
,
M.
Chelliah
,
W.
Ebisuzaki
,
W.
Higgins
,
J.
Janowiak
,
K. C.
Mo
,
C.
Ropelewski
,
J.
Wang
,
A.
Leetmaa
,
R.
Reynolds
,
R.
Jenne
, and
D.
Joseph
, “
The NCEP/NCAR 40-year reanalysis project
,”
Bull. Am. Meteorol. Soc.
77
,
437
472
(
1996
).
72.
E. K. M.
Chang
, “
The role of wave packets in wave–mean flow interactions during southern hemisphere summer
,”
J. Atmos. Sci.
62
,
2467
2483
(
2005
).
73.
T. M.
Lenton
,
J.
Rockström
,
O.
Gaffney
,
S.
Rahmstorf
,
K.
Richardson
,
W.
Steffen
, and
H. J.
Schellnhuber
, “
Climate tipping points—Too risky to bet against
,”
Nature
575
,
592
595
(
2019
).
74.
H.
McGowan
and
A.
Theobald
, “
Atypical weather patterns cause coral bleaching on the great barrier reef, australia during the 2021–2022 la niña
,”
Sci. Rep.
13
,
6397
(
2023
).
75.
E.
Kalnay
, et al., “
The NCEP/NCAR 40-year reanalysis project
,”
Bull. Am. Meteorol. Soc.
77
,
437–471
(
1996
).

Supplementary Material

You do not currently have access to this content.