We model dynamics of a quantum dot based micropillar laser array subject to the time-delayed optical feedback. The global coupling provided by the feedback generates a rich set of various instabilities including chaotic regimes with strong time-delay signature in the autocorrelation function. We demonstrate that the dispersion of the array coupling phases leads to effective suppression of the time-delay signature due to the dispersion of the system’s internal timescales. We find that the transition to the complete suppression of the time-delay signature appears via a chimera state where highly correlated and non-correlated laser outputs coexist. The degree of correlation in the chimera state depends on the coupling phase dispersion.

1.
M. S.
Yeung
and
S. H.
Strogatz
, “
Time delay in the Kuramoto model of coupled oscillators
,”
Phys. Rev. Lett.
82
,
648
(
1999
).
2.
G.
Kozyreff
,
A.
Vladimirov
, and
P.
Mandel
, “
Global coupling with time delay in an array of semiconductor lasers
,”
Phys. Rev. Lett.
85
,
3809
(
2000
).
3.
G.
Kozyreff
,
A. G.
Vladimirov
, and
P.
Mandel
, “
Dynamics of a semiconductor laser array with delayed global coupling
,”
Phys. Rev. E
64
,
016613
(
2001
).
4.
F.
Böhm
,
A.
Zakharova
,
E.
Schöll
, and
K.
Lüdge
, “
Amplitude-phase coupling drives chimera states in globally coupled laser networks
,”
Phys. Rev. E
91
,
040901
(
2015
).
5.
D.
Rontani
,
A.
Locquet
,
M.
Sciamanna
,
D. S.
Citrin
, and
S.
Ortin
, “
Time-delay identification in a chaotic semiconductor laser with optical feedback: A dynamical point of view
,”
IEEE J. Quantum Electron.
45
,
879
1891
(
2009
).
6.
J.-G.
Wu
,
G.-Q.
Xia
,
X.
Tang
,
X.-D.
Lin
,
T.
Deng
,
L.
Fan
, and
Z.-M.
Wu
, “
Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser
,”
Opt. Express
18
,
6661
6666
(
2010
).
7.
L.-Y.
Wang
,
Z.-Q.
Zhong
,
Z.-M.
Wu
,
D.
Lu
,
X.
Chen
,
J.
Chen
, and
G.-Q.
Xia
, “Bandwidth enhancement and time-delay signature suppression of chaotic signal from an optical feedback semiconductor laser by using cross phase modulation in a highly nonlinear fiber loop mirror,” in Semiconductor Lasers and Applications VII (SPIE, 2016), Vol. 10017, pp. 82–87.
8.
A.
Uchida
,
K.
Amano
,
M.
Inoue
,
K.
Hirano
,
S.
Naito
,
H.
Someya
,
I.
Oowada
,
T.
Kurashige
,
M.
Shiki
,
S.
Yoshimori
,
K.
Yoshimura
, and
P.
Davis
, “
Fast physical random bit generation with chaotic semiconductor lasers
,”
Nat. Photon.
2
,
728
732
(
2008
).
9.
I.
Kanter
,
Y.
Aviad
,
I.
Reidler
,
E.
Cohen
, and
M.
Rosenbluh
, “
An optical ultrafast random bit generator
,”
Nat. Photon.
4
,
58
61
(
2010
).
10.
H.
Liu
,
N.
Li
, and
Q.
Zhao
, “
Photonic generation of polarization-resolved wideband chaos with time-delay concealment in three-cascaded vertical-cavity surface-emitting lasers
,”
Appl. Opt.
54
,
4380
4387
(
2015
).
11.
J.-G.
Wu
,
G.-Q.
Xia
,
L.-P.
Cao
, and
Z.-M.
Wu
, “
Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser
,”
Opt. Comm.
282
,
3153
3156
(
2009
).
12.
R. M.
Nguimdo
,
M. C.
Soriano
, and
P.
Colet
, “
Role of the phase in the identification of delay time in semiconductor lasers with optical feedback
,”
Opt. Lett.
36
,
4332
4334
(
2011
).
13.
N.
Li
,
W.
Pan
,
S.
Xiang
,
L.
Yan
,
B.
Luo
, and
X.
Zou
, “
Loss of time delay signature in broadband cascade-coupled semiconductor lasers
,”
IEEE Photonics Technol. Lett.
24
,
2187
2190
(
2012
).
14.
J.-P.
Zhuang
and
S.-C.
Chan
, “
Phase noise characteristics of microwave signals generated by semiconductor laser dynamics
,”
Opt. Express
23
,
2777
2797
(
2015
).
15.
M.
Lee
,
P.
Rees
,
K.
Shore
,
S.
Ortin
,
L.
Pesquera
, and
A.
Valle
, “
Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications
,”
IEE Proc. Optoelectron.
152
,
97
102
(
2005
).
16.
S.
Ji
and
Y.
Hong
, “
Effect of bias current on complexity and time delay signature of chaos in semiconductor laser with time-delayed optical feedback
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
1800706
(
2017
).
17.
D.
Rontani
,
A.
Locquet
,
M.
Sciamanna
, and
D.
Citrin
, “
Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback
,”
Opt. Lett.
32
,
2960
2962
(
2007
).
18.
H.
Lin
,
A.
Khurram
, and
Y.
Hong
, “
Time-delay signatures in multi-transverse mode vcsels subject to double-cavity polarization-rotated optical feedback
,”
Opt. Comm.
377
,
128
138
(
2016
).
19.
Y.
Guo
,
T.
Liu
,
T.
Zhao
,
H.
Zhang
, and
X.
Guo
, “
Chaotic time-delay signature suppression and entropy growth enhancement using frequency-band extractor
,”
Entropy
23
,
516
(
2021
).
20.
J.-G.
Wu
,
G.-Q.
Xia
, and
Z.-M.
Wu
, “
Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback
,”
Opt. Express
17
,
20124
20133
(
2009
).
21.
Z.-Q.
Zhong
,
S.-S.
Li
,
S.-C.
Chan
,
G.-Q.
Xia
, and
Z.-M.
Wu
, “
Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL
,”
Opt. Express
23
,
15459
15468
(
2015
).
22.
S.-S.
Li
,
Q.
Liu
, and
S.-C.
Chan
, “
Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser
,”
IEEE Photon. J.
4
,
1930
1935
(
2012
).
23.
S.-S.
Li
and
S.-C.
Chan
, “
Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback
,”
IEEE J. Sel. Top. Quantum Electron.
21
,
541
552
(
2015
).
24.
S.-S.
Li
,
X.-Z.
Li
, and
S.-C.
Chan
, “
Chaotic time-delay signature suppression with bandwidth broadening by fiber propagation
,”
Opt. Lett.
43
,
4751
4754
(
2018
).
25.
A.
Zhao
,
N.
Jiang
,
S.
Liu
,
C.
Xue
,
J.
Tang
, and
K.
Qiu
, “
Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback
,”
Opt. Express
27
,
12336
12348
(
2019
).
26.
N.
Jiang
,
A.
Zhao
,
S.
Liu
,
C.
Xue
,
B.
Wang
, and
K.
Qiu
, “
Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator
,”
Opt. Lett.
43
,
5359
5362
(
2018
).
27.
C.-H.
Cheng
,
Y.-C.
Chen
, and
F.-Y.
Lin
, “
Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning
,”
Opt. Express
23
,
2308
2319
(
2015
).
28.
N.
Jiang
,
C.
Wang
,
C.
Xue
,
G.
Li
,
S.
Lin
, and
K.
Qiu
, “
Generation of flat wideband chaos with suppressed time delay signature by using optical time lens
,”
Opt. Express
25
,
14359
14367
(
2017
).
29.
T.
Erneux
,
E. A.
Viktorov
, and
P.
Mandel
, “
Time scales and relaxation dynamics in quantum-dot lasers
,”
Phys. Rev. A
76
,
023819
(
2007
).
30.
V.
Flunkert
and
E.
Schöll
, “
Chaos synchronization in networks of delay-coupled lasers: Role of the coupling phases
,”
New J. Phys.
14
,
033039
(
2012
).
31.
D.
O’Brien
,
S.
Hegarty
,
G.
Huyet
, and
A.
Uskov
, “
Sensitivity of quantum-dot semiconductor lasers to optical feedback
,”
Opt. Lett.
29
,
1072
1074
(
2004
).
32.
A.
Petrenko
,
A.
Kovalev
, and
V.
Bougrov
, “
Random number generator based on semiconductor nanoheterostructures with quantum dots and optical feedback
,”
J. Opt. Tech.
89
,
506
510
(
2022
).
33.
K.
Engelborghs
,
T.
Luzyanina
, and
D.
Roose
, “
Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL
,”
ACM Trans. Math. Softw.
28
,
1
21
(
2002
).
34.
N.
Blackbeard
,
H.
Erzgräber
, and
S.
Wieczorek
, “
Shear-induced bifurcations and chaos in models of three coupled lasers
,”
SIAM J. Appl. Dyn. Syst.
10
,
469
509
(
2011
).
35.
T.
Heuser
,
J.
Große
,
S.
Holzinger
,
M. M.
Sommer
, and
S.
Reitzenstein
, “
Development of highly homogenous quantum dot micropillar arrays for optical reservoir computing
,”
IEEE J. Sel. Top. Quantum Electron.
26
,
1900109
(
2019
).
36.
T.
Heuser
,
J.
Große
,
A.
Kaganskiy
,
D.
Brunner
, and
S.
Reitzenstein
, “
Fabrication of dense diameter-tuned quantum dot micropillar arrays for applications in photonic information processing
,”
APL Photonics
3
,
116103
(
2018
).
37.
R.
Vicente
,
I.
Fischer
, and
C. R.
Mirasso
, “
Synchronization properties of three delay-coupled semiconductor lasers
,”
Phys. Rev. E
78
,
066202
(
2008
).
You do not currently have access to this content.