Controlling chaos is fundamental in many applications, and for this reason, many techniques have been proposed to address this problem. Here, we propose a strategy based on an optimal placement of the sensor and actuator providing global observability of the state space and global controllability to any desired state. The first of these two conditions enables the derivation of a model of the system by using a global modeling technique. In turn, this permits the use of feedback linearization for designing the control law based on the equations of the obtained model and providing a zero-flat system. The procedure is applied to three case studies, including two piecewise linear circuits, namely, the Carroll circuit and the Chua circuit whose governing equations are approximated by a continuous global model. The sensitivity of the procedure to the time constant of the dynamics is also discussed.

1
C.-T.
Lin
, “
Structural controllability
,”
IEEE Trans. Autom. Control
19
,
201
208
(
1974
).
2
R.
Kalman
, “
On the general theory of control systems
,” in ,”
IFAC Proc. Vol.
1
,
491
502
(
1960
).
3
M.
Fliess
,
J. L.
Lévine
,
P.
Martin
, and
P.
Rouchon
, “
Flatness and defect of non-linear systems: Introductory theory and examples
,”
Int. J. Control
61
,
1327
1361
(
1995
).
4
G.
Franklin
,
J.
Powell
, and
A.
Emami-Naeini
,
Feedback Control of Dynamic Systems
, 8th ed. (
Pearson
,
2015
).
5
H. K.
Khalil
,
Nonlinear Systems
, 3rd ed. (
Pearson
,
2002
).
6
A.
Isidori
,
Nonlinear Control Systems
(
Springer
,
1995
).
7
E. D.
Sontag
,
Mathematical Control Theory: Deterministic Finite Dimensional Systems
, 2nd ed. (
Springer
,
New York
,
1998
).
8
R.
Ortega
, “
Passivity properties for stabilization of cascaded nonlinear systems
,”
Automatica
27
,
423
424
(
1991
).
9
Z.-P.
Jiang
and
L.
Praly
, “
Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties
,”
Automatica
34
,
825
840
(
1998
).
10
V.
Utkin
, Sliding Modes in Control and Optimization, Communications and Control Engineering (Springer-Verlag, Berlin, 1992).
11
L. A.
Aguirre
and
C.
Letellier
, “
Modeling nonlinear dynamics and chaos: A review
,”
Math. Probl. Eng.
2009
,
238960
(
2009
).
12
S.
Billings
and
I. J.
Leontaritis
, “
Parameter estimation techniques for nonlinear systems
,”
IFAC Proc. Vol.
15
,
505
510
(
1982
).
13
J. P.
Crutchfield
and
B. S.
McNamara
, “
Equations of motion from a data series
,”
Complex Syst.
1
,
417
452
(
1987
).
14
J.
Cremers
and
A.
Hübler
, “
Construction of differential equations from experimental data
,”
Z. Naturforsch. A
42
,
797
802
(
1987
).
15
G.
Gouesbet
and
C.
Letellier
, “
Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets
,”
Phys. Rev. E
49
,
4955
4972
(
1994
).
16
S.
Mangiarotti
,
R.
Coudret
,
L.
Drapeau
, and
L.
Jarlan
, “
Polynomial search and global modeling: Two algorithms for modeling chaos
,”
Phys. Rev. E
86
,
046205
(
2012
).
17
S.
Mangiarotti
and
M.
Huc
, “
Can the original equations of a dynamical system be retrieved from observational time series?
,”
Chaos
29
,
023133
(
2019
).
18
R.
Rico-Martínez
,
K.
Krischer
,
I. G.
Kevrekidis
,
M. C.
Kube
, and
J. L.
Hudson
, “
Discrete-vs continuous time nonlinear signal processing of Cu electrodissolution data
,”
Chem. Eng. Commun.
118
,
25
48
(
1992
).
19
C.
Letellier
,
L. L.
Sceller
,
P.
Dutertre
,
G.
Gouesbet
,
Z.
Fei
, and
J. L.
Hudson
, “
Topological characterization and global vector field reconstruction from an experimental electrochemical system
,”
J. Phys. Chem.
99
,
7016
7027
(
1995
).
20
C.
Letellier
,
J.
Maquet
,
H.
Labro
,
L. L.
Sceller
,
G.
Gouesbet
,
F.
Argoul
, and
A.
Arnéodo
, “
Analyzing chaotic behaviour in a Belousov-Zhabotinskii reaction by using a global vector field reconstruction
,”
J. Phys. Chem. A
102
,
10265
10273
(
1998
).
21
C.
Letellier
,
L. L.
Sceller
,
G.
Gouesbet
,
F.
Lusseyran
,
A.
Kemoun
, and
B.
Izrar
, “
Recovering deterministic behavior from experimental time series in mixing reactor
,”
AIChE J.
43
,
2194
2202
(
1997
).
22
R.
Brown
,
N. F.
Rulkov
, and
E. R.
Tracy
, “
Modeling and synchronizing chaotic systems from experimental data
,”
Phys. Lett. A
194
,
71
76
(
1994
).
23
J.
Maquet
,
C.
Letellier
, and
L. A.
Aguirre
, “
Global models from the Canadian lynx cycles as a first evidence for chaos in real ecosystems
,”
J. Math. Biol.
55
,
21
39
(
2007
).
24
L. A.
Aguirre
,
C.
Letellier
, and
J.
Maquet
, “
Forecasting the time series of sunspot numbers
,”
Sol. Phys.
249
,
103
120
(
2008
).
25
S.
Mangiarotti
,
L.
Drapeau
, and
C.
Letellier
, “
Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco
,”
Chaos
24
,
023130
(
2014
).
26
S.
Mangiarotti
,
M.
Peyre
, and
M.
Huc
, “
A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016)
,”
Chaos
26
,
113112
(
2016
).
27
C.
Letellier
,
R.
Abraham
,
D. L.
Shepelyansky
,
O. E.
össler
,
P.
Holmes
,
R.
Lozi
,
L.
Glass
,
A.
Pikovsky
,
L. F.
Olsen
,
I.
Tsuda
,
C.
Grebogi
,
U.
Parlitz
,
R.
Gilmore
,
L. M.
Pecora
, and
T. L.
Carroll
, “
Some elements for a history of the dynamical systems theory
,”
Chaos
31
,
053110
(
2021
).
28
C.
Letellier
,
P.
Dutertre
, and
B.
Maheu
, “
Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization
,”
Chaos
5
,
271
282
(
1995
).
29
T. L.
Carroll
, “
A simple circuit for demonstrating regular and synchronized chaos
,”
Am. J. Phys.
63
,
377
379
(
1995
).
30
C.
Letellier
and
J.-P.
Barbot
, “
Flatness for an optimal control of chaotic systems using a minimal numbers of sensors and actuators
,”
Chaos
31
,
103114
(
2021
).
31
C.
Letellier
,
L.
Minati
, and
J.-P.
Barbot
, “
Optimal placement of sensor and actuator for controlling the piecewise linear Chua circuit via a discretized controller
,”
J. Differ. Discrete Equ.
(in press) (
2022
).
32
R.
Hermann
and
A.
Krener
, “
Nonlinear controllability and observability
,”
IEEE Trans. Autom. Control
22
,
728
740
(
1977
).
33
C.
Lobry
, “
Contrôlabilité des systèmes non linéaires
,”
SIAM J. Control Optim.
8
,
573
605
(
1970
).
34
H. J.
Sussmann
and
V.
Jurdjevic
, “
Controllability of nonlinear systems
,”
J. Differ. Equ.
12
,
95
116
(
1972
).
35
B.
Jakubczyk
and
W.
Respondek
, “
On linearization of control systems
,”
Bull. Acad. Pol. Sér. Sci. Math.
28
,
517
522
(
1980
).
36
L.
Hunt
,
Renjeng
Su
, and
G.
Meyer
, “
Global transformations of nonlinear systems
,”
IEEE Trans. Autom. Control
28
,
24
31
(
1983
).
37
A.
Isidori
,
A.
Krener
,
C.
Gori-Giorgi
, and
S.
Monaco
, “
Nonlinear decoupling via feedback: A differential geometric approach
,”
IEEE Trans. Autom. Control
26
,
331
345
(
1981
).
38
J.
Pathak
,
Z.
Lu
,
B. R.
Hunt
,
M.
Girvan
, and
E.
Ott
, “
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
,”
Chaos
27
,
121102
(
2017
).
39
P.
Rajendra
and
V.
Brahmajirao
, “
Modeling of dynamical systems through deep learning
,”
Biophys. Rev.
12
,
1311
1320
(
2020
).
40
L. A.
Aguirre
,
U. S.
Freitas
,
C.
Letellier
,
L. L.
Sceller
, and
J.
Maquet
, “
State space parsimonious reconstruction of attractor produced by an electronic oscillator
,”
AIP Conf. Proc.
502
,
649
654
(
2000
).
41
L. A.
Aguirre
, “
Some remarks on structure selection for nonlinear models
,”
Int. J. Bifurcation Chaos
04
,
1707
1714
(
1994
).
42
C. S. M.
Lainscsek
,
C.
Letellier
, and
F.
Schürrer
, “
Ansatz library for global modeling with a structure selection
,”
Phys. Rev. E
64
,
016206
(
2001
).
43
D. A.
Smirnov
,
B. P.
Bezruchko
, and
Y. P.
Seleznev
, “
Choice of dynamical variables for global reconstruction of model equations from time series
,”
Phys. Rev. E
65
,
026205
(
2002
).
44
S.
Chen
,
S. A.
Billings
, and
W.
Luo
, “
Orthogonal least squares methods and their application to non-linear system identification
,”
Int. J. Control
50
,
1873
1896
(
1989
).
45
J. L.
Breeden
and
A.
Hübler
, “
Reconstructing equations of motion from experimental data with unobserved variables
,”
Phys. Rev. A
42
,
5817
5826
(
1990
).
46
M.
Giona
,
F.
Lentini
, and
V.
Cimagalli
, “
Functional reconstruction and local prediction of chaotic time series
,”
Phys. Rev. A
44
,
3496
3502
(
1991
).
47
L. A.
Aguirre
and
S. A.
Billings
, “
Retrieving dynamical invariants from chaotic data using NARMAX models
,”
Int. J. Bifurcation Chaos
5
,
449
474
(
1995
).
48
K.
Judd
and
A.
Mees
, “
Embedding as a modeling problem
,”
Physica D
120
,
273
286
(
1998
).
49
C.
Letellier
and
J.-M.
Ginoux
, “
Development of the nonlinear dynamical systems theory from radio-engineering to electronics
,”
Int. J. Bifurcation Chaos
19
,
2131
2163
(
2009
).
50
C.
Letellier
and
L. A.
Aguirre
, “
Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables
,”
Chaos
12
,
549
558
(
2002
).
51
C.
Letellier
,
L.
Aguirre
, and
J.
Maquet
, “
How the choice of the observable may influence the analysis of nonlinear dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
11
,
555
576
(
2006
).
52
C.
Letellier
,
L. A.
Aguirre
, and
J.
Maquet
, “
Relation between observability and differential embeddings for nonlinear dynamics
,”
Phys. Rev. E
71
,
066213
(
2005
).
53
H. D. I.
Abarbanel
and
M. B.
Kennel
, “
Local false nearest neighbors and dynamical dimensions from observed chaotic data
,”
Phys. Rev. E
47
,
3057
3068
(
1993
).
54
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Phys. D
110
,
43
50
(
1997
).
55
.
56
C.
Letellier
, “Caractérisation topologique et reconstruction des attracteurs étranges,” Ph.D. thesis (University of Paris VII, Paris, France, 1994).
57
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
58
R. W.
Brockett
and
C. I.
Byrnes
, “
Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint
,”
IEEE Trans. Autom. Control
26
,
271
284
(
1981
).
59
C.
Letellier
,
S.
Mangiarotti
,
I.
Sendiña-Nadal
, and
O. E.
Rössler
, “
Topological characterization versus synchronization for assessing (or not) dynamical equivalence
,”
Chaos
28
,
045107
(
2018
).
60
P.
Dorato
, “
A historical review of robust control
,”
IEEE Control Syst. Mag.
7
,
44
47
(
1987
).
61
T.
Matsumoto
, “
A chaotic attractor from Chua’s circuit
,”
IEEE Trans. Circuits Syst.
CAS-31
,
1055
1058
(
1984
).
62
T.
Matsumoto
,
L. O.
Chua
, and
M.
Komuro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
CAS-32
,
798
818
(
1985
).
63
M.
Rosalie
and
C.
Letellier
, “
Systematic template extraction from chaotic attractors: I. Genus-one attractors with an inversion symmetry
,”
J. Phys. A
46
,
375101
(
2013
).
64
R. W.
Ghrist
and
P. J.
Holmes
, “
An ODE whose solutions contain all knots and links
,”
Int. J. Bifurcations Chaos
6
,
779
800
(
1996
).
65
R. W.
Ghrist
, “
Branched two-manifolds supporting all links
,”
Topology
36
,
423
448
(
1997
).
66
C.
Letellier
and
R.
Gilmore
, “
The universal template is a subtemplate of the double-scroll template
,”
J. Phys. A
46
,
065102
(
2013
).
67
C.
Letellier
,
P.
Dutertre
,
J.
Reizner
, and
G.
Gouesbet
, “
Evolution of multimodal map induced by an equivariant vector field
,”
J. Phys. A
29
,
5359
5373
(
1996
).
68
A. I.
Khitnik
,
D.
Rose
, and
L. O.
Chua
, “
On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth non linearity
,”
Int. J. Bifurcations Chaos
3
,
363
384
(
1993
).
69
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
70
C.
Letellier
and
R.
Gilmore
, “
Covering dynamical systems: Two-fold covers
,”
Phys. Rev. E
63
,
016206
(
2001
).
71
L.
Rosier
, “
Homogeneous Lyapunov function for homogeneous continuous vector field
,”
Syst. Control Lett.
19
,
467
473
(
1992
).
72
A.
Polyakov
, “
On homogeneous controllability functions
,”
Visnyk V. N. Karazin Kharkiv Nat. Univ. Ser. Math. Appl. Math. Mech.
94
,
24
39
(
2021
).
73
C.
Letellier
,
E.
Ringuet
,
B.
Maheu
,
J.
Maquet
, and
G.
Gouesbet
, “
Global vector field reconstruction of chaotic attractors from one unstable periodic orbit
,”
Entropie
202/203
,
147
153
(
1997
).
You do not currently have access to this content.