The dynamics of the Colpitts oscillator with an exponential nonlinearity is investigated using rigorous interval arithmetic based tools. The existence of various types of periodic attractors is proved using the interval Newton method. The main results involve the chaotic case for which a trapping region for the associated return map is constructed and a rigorous lower bound for the value of the topological entropy is computed, thus proving that the system is chaotic in the topological sense. A systematic search for unstable periodic orbits embedded in the chaotic attractor is carried out and the results are used to obtain an accurate approximation of the topological entropy of the system.

1.
L. O.
Chua
,
M.
Komuro
, and
T.
Matsumoto
, “
The double scroll family
,”
IEEE Trans. Circuits Syst.
33
,
1037
1118
(
1986
).
2.
M. P.
Kennedy
, “
Chaos in the Colpitts oscillator
,”
IEEE Trans. Circuits Syst.
41
,
771
774
(
1994
).
3.
G.
Maggio
,
O.
De Feo
, and
M.
Kennedy
, “
Nonlinear analysis of the Colpitts oscillator and applications to design
,”
IEEE Trans. Circuits Syst. I
46
,
1118
1130
(
1999
).
4.
G. M.
Maggio
,
M.
di Bernardo
, and
M. P.
Kennedy
, “
Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator
,”
IEEE Trans. Circuits Syst.
47
,
1160
1177
(
2000
).
5.
I. M.
Filanovsky
,
C. J. M.
Verhoeven
, and
M.
Reja
, “
Remarks on analysis, design and amplitude stability of MOS Colpitts oscillator
,”
IEEE Trans. Circuits Syst. II
54
,
800
804
(
2007
).
6.
S.
Rasappan
and
N. K.
Jothi
, “
Control of Colpitts-oscillator via adaptive nonlinear control
,” in
2014 International Conference on Science Engineering and Management Research (ICSEMR)
(
IEEE
,
2014
), pp.
1
5
.
7.
A.
Semenov
,
K.
Koval
,
A.
Savytskyi
,
O.
Zviahin
, and
S.
Baraban
, “
Numerical study of the deterministic chaos oscillator with a differential integral element on the Colpitts circuit
,” in
2018 14th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET)
(
IEEE
,
2018
), pp.
846
850
.
8.
Z.
Galias
,
C. A.
Murphy
,
M. P.
Kennedy
, and
M. J.
Ogorzalek
, “
Electronic chaos controller
,”
Chaos Soliton. Fract.
8
,
1471
1484
(
1997
).
9.
A.
Tamasevicius
,
G.
Mykolaitis
,
S.
Bumeliene
,
A.
Baziliauskas
,
R.
Krivickas
, and
E.
Lindberg
, “
Chaotic Colpitts oscillator for the ultrahigh frequency range
,”
Nonlinear Dyn.
44
,
159
165
(
2006
).
10.
J.
Kengne
,
J. C.
Chedjou
,
G.
Kenné
, and
K.
Kyamakya
, “
Dynamical properties and chaos synchronization of improved Colpitts oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2914
2923
(
2012
).
11.
R.
Tchitnga
,
T.
Nguazon
,
P. H.
Louodop Fotso
, and
J. A. C.
Gallas
, “
Chaos in a single op-amp-based jerk circuit: Experiments and simulations
,”
IEEE Trans. Circuits Syst. II
63
,
239
243
(
2016
).
12.
M.
Abdullah
,
S.
Iqbal
, and
U.
Shahid
, “
On the study of chaotic Colpitts oscillator using simulations and experiments
,” in
2018 International Conference on Electrical Engineering (ICEE)
(
IEEE
,
2018
), pp.
1
6
.
13.
F.
Behzad
and
M.
Hamdipour
, “
Detailed investigation of chaos in a Colpitts oscillator
,”
Pramana—J. Phys.
95
,
2
(
2021
).
14.
I.
Vasiljević
,
A.
Lekić
, and
D.
Stipanović
, “
Lyapunov analysis of the chaotic Colpitts oscillator
,” in
2019 IEEE International Symposium on Circuits and Systems (ISCAS)
(
IEEE
,
2019
), pp.
1
–,
5
.
15.
A.
Neumaier
,
Interval Methods for Systems of Equations
(
Cambridge University Press
,
Cambridge
,
1990
).
16.
W.
Tucker
,
Validated Numerics: A Short Introduction to Rigorous Computations
(
Princeton University Press
,
2011
).
17.
T.
Kapela
,
M.
Mrozek
,
D.
Wilczak
, and
P.
Zgliczyński
, “
CAPD::DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
101
,
105578
(
2020
).
18.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
19.
C.
Robinson
,
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
(
CRC Press
,
Boca Raton, FL
,
1995
).
20.
P.
Zgliczyński
, “
Computer assisted proof of chaos in the Rössler equations and in the Hénon map
,”
Nonlinearity
10
,
243
252
(
1997
).
21.
P.
Zgliczynski
, “
Covering relations, cone conditions and the stable manifold theorem
,”
J. Differ. Equ.
246
,
1774
1819
(
2009
).
22.
Z.
Galias
, “
The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems—And how to avoid them
,”
IEEE Circuits Syst. Mag.
13
,
35
52
(
2013
).
23.
I.
Cornfeld
,
S.
Fomin
, and
Y.
Sinai
,
Ergodic Theory
(
Springer Verlag
,
New York
,
1982
).
24.
D.
Lathrop
and
E.
Kostelich
, “
Characterisation of an experimental strange attractor by periodic orbits
,”
Phys. Rev. A
40
,
4028
4031
(
1989
).
25.
R.
Bowen
, “
Periodic points and measures for axiom A diffeomorphisms
,”
Trans. Am. Math. Soc.
154
,
377
397
(
1971
).
You do not currently have access to this content.