An intellectual journey that began with the discovery of strange attractors derived from Chua's circuit, their translation into physical shapes by means of 3D printers, and finally, to the production of jewelry is presented. After giving the mathematical characteristics of Chua's circuit, we explain the chaotic design process, used for creating jewels, providing specifications of the used methodological approach, for its reproduction. We discuss the feasibility of this approach and the transmission of scientific contents on chaos theory, usually restricted to university students, in a high school Science, Technology, Engineering, Art, and Mathematics course, for the realization of advanced educational processes, implemented both in computational and real environments. We think that the idea of transforming science into art forms can drive students in acquiring scientific knowledge and skills, allowing them to discover the inner beauty of chaos.

1.
Adamo
,
A.
,
Bertacchini
,
P. A.
,
Bilotta
,
E.
,
Pantano
,
P.
, and
Tavernise
,
A.
, “
Connecting art and science for education: Learning through an advanced virtual theater with ‘talking heads,’
Leonardo
43
(
5
),
442
448
(
2010
).
2.
Anishchenko
,
V. S.
and
Strelkova
,
G. I.
, “
Attractors of dynamical systems
,” in
1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No. 97TH8329)
(
IEEE
,
1997
), Vol. 3, pp.
498
503
.
3.
Arneodo
,
A.
,
Coullet
,
P.
,
Peyraud
,
J.
, and
Tresser
,
C.
, “
Strange attractors in Volterra equations for species in competition
,”
J. Math. Biol.
14
(
2
),
153
157
(
1982
).
4.
Arneodo
,
A.
,
Coullet
,
P.
, and
Tresser
,
C.
, “
Possible new strange attractors with spiral structure
,”
Commun. Math. Phys.
79
(
4
),
573
579
(
1981
).
5.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Caldarola
,
F.
, and
Pantano
,
P.
, “
The role of computer simulations in learning analytic mechanics towards chaos theory: A course experimentation
,”
Int. J. Math. Educ. Sci. Technol.
50
(
1
),
100
120
(
2019
).
6.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Carini
,
M.
,
Gabriele
,
L.
,
Pantano
,
P.
, and
Tavernise
,
A.
, “
Learning in the smart city: A virtual and augmented museum devoted to chaos theory
,” in
International Conference on Web-Based Learning
(
Springer
,
Berlin
,
2012b
), pp.
261
270
.
7.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Demarco
,
F.
,
Pantano
,
P.
, and
Scuro
,
C.
, “
Multi-objective optimization and rapid prototyping for jewelry industry: Methodologies and case studies
,”
Int. J. Adv. Manuf. Technol.
112
(
9
),
2943
2959
(
2021
).
8.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Gabriele
,
L.
,
Pantano
,
P.
, and
Servidio
,
R.
, “
Using Lego MindStorms in higher education: Cognitive strategies in programming a quadruped robot
,” in
Workshop Proceedings of the 18th International Conference on Computers in Education, ICCE
(Asia-Pacific Society for Computers in Education, Putrajaya, Malaysia,
2010
), pp.
366
371
.
9.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Gabriele
,
L.
,
Pantano
,
P.
, and
Tavernise
,
A.
, “
Toward the use of Chua’s circuit in education, art and interdisciplinary research: Some implementation and opportunities
,”
Leonardo
46
(
5
),
456
463
(
2013a
).
10.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Laria
,
G.
, and
Pantano
,
P.
, “
The genesis of Chua’s circuit. Connecting science, Art and creativity
,” in
Chaos, CNN, Memristors and Beyond
(
World Scientific
,
2013b
), pp.
108
123
.
11.
Bertacchini
,
F.
,
Bilotta
,
E.
,
Pantano
,
P.
, and
Tavernise
,
A.
, “
Motivating the learning of science topics in secondary school: A constructivist edutainment setting for studying Chaos
,”
Comput. Educ.
59
(
4
),
1377
1386
(
2012a
).
12.
Bertacchini
,
F.
,
Scuro
,
C.
,
Pantano
,
P.
, and
Bilotta
,
E.
, “
A project based learning approach for improving students’ computational thinking skills
,”
Front. Rob. AI
9
, 1–25 (
2022
).
13.
Bilotta
,
E.
,
Bossio
,
E.
, and
Pantano
,
P.
, “
Chaos at school: Chua’s circuit for students in junior and senior high school
,”
Int. J. Bifurc. Chaos
20
(
01
),
1
28
(
2010
).
14.
Bilotta
,
E.
,
Di Blasi
,
G.
,
Stranges
,
F.
, and
Pantano
,
P.
, “
A gallery of Chua attractors: Part IV
,”
Int. J. Bifurc. Chaos
17
(
04
),
1017
1077
(
2007d
).
15.
Bilotta
,
E.
,
Di Blasi
,
G.
,
Stranges
,
F.
, and
Pantano
,
P.
, “
A gallery of Chua attractors: Part V
,”
Int. J. Bifurc. Chaos
17
(
05
),
1383
1511
(
2007e
).
16.
Bilotta
,
E.
,
Di Blasi
,
G.
,
Stranges
,
F.
, and
Pantano
,
P.
, “
A gallery of Chua attractors: Part VI
,”
Int. J. Bifurc. Chaos
17
(
06
),
1801
1910
(
2007f
).
17.
Bilotta
,
E.
,
Gervasi
,
S.
, and
Pantano
,
P.
, “
Reading complexity in Chua oscillator through music. Part I: A new way of understanding chaos
,”
Int. J. Bifurc. Chaos
15
,
253
382
(
2005
).
18.
Bilotta
,
E.
and
Pantano
,
P.
,
A Gallery of Chua Attractors, A (With Dvd-rom) (Vol. 61)
(
World Scientific
,
2008
).
45.
Bilotta
,
E.
, and
Pantano
,
P.
, “
The language of chaos
,”
Int. J. Bifurc. Chaos
16
(
3
),
523
557
(
2006
).
19.
Bilotta
,
E.
and
Pantano
,
P.
, “
Discrete chaotic dynamics from Chua’s oscillator: Chua machines
,”
Int. J. Bifurc. Chaos
19
(
01
),
1
115
(
2009
).
20.
Bilotta
,
E.
,
Pantano
,
P.
,
Cupellini
,
E.
, and
Rizzuti
,
C.,
Evolutionary methods for melodic sequences generation from non-linear dynamic systems
,” in
Workshops on Applications of Evolutionary Computation
(
Springer
,
Berlin
,
2007g
), pp.
585
592
.
46.
Bilotta
,
E.
,
Pantano
,
P.
, and
Stranges
,
F.
, “
Computer graphics meets chaos and hyperchaos. Some key problems
,”
Computers & Graphics
30
(
3
),
359
367
(
2006
).
21.
Bilotta
,
E.
,
Pantano
,
P.
, and
Stranges
,
F.
, “
A gallery of Chua attractors: Part I
,”
Int. J. Bifurc. Chaos
17
(
01
),
1
60
(
2007a
).
22.
Bilotta
,
E.
,
Pantano
,
P.
, and
Stranges
,
F.
, “
A gallery of Chua attractors: Part II
,”
Int. J. Bifurc. Chaos
17
(
02
),
293
380
(
2007b
).
23.
Bilotta
,
E.
,
Stranges
,
F.
, and
Pantano
,
P.
, “
A gallery of Chua attractors: Part III
,”
Int. J. Bifurc. Chaos
17
(
03
),
657
734
(
2007c
).
24.
Cai
,
G.
and
Huang
,
J.
, “
A new finance chaotic attractor
,”
Int. J. Nonlinear Sci.
3
(
3
),
213
220
(
2007
).
25.
Chen
,
H.
, “
Global chaos synchronization of new chaotic systems via nonlinear control
,”
Chaos Solitons Fractals
23
(
4
),
1245
1251
(
2005
).
26.
Chua
,
L. O.
,
The Genesis of Chua’s Circuit
(
Electronics Research Laboratory, College of Engineering, University of California
,
Berkeley
,
CA
,
1992
).
27.
Chua
,
L. O.
, “
Chua’s circuit: An overview ten years later
,”
J. Circuits, Syst. Comput.
04
(
02
),
117
159
(
1994
).
47.
Chua
,
L. O.
, “
Global unfolding of Chua's circuit
,”
IEICE Trans. Fund. Electron. Commun. Comput. Sci.
76
(
5
),
704
734
(
1993
).
29.
Demarco
,
F.
,
Bertacchini
,
F.
,
Scuro
,
C.
,
Bilotta
,
E.
, and
Pantano
,
P.
, “
Algorithms for jewelry industry 4.0
,” in
International Conference on Numerical Computations: Theory and Algorithms
(
Springer
,
Cham
,
2019
), pp.
425
436
.
30.
Demarco
,
F.
,
Bertacchini
,
F.
,
Scuro
,
C.
,
Bilotta
,
E.
, and
Pantano
,
P.
, “
The development and application of an optimization tool in industrial design
,”
Int. J. Interact. Des. Manuf.
14
(
3
),
955
970
(
2020
).
31.
Gabriele
,
L.
,
Bertacchini
,
F.
,
Tavernise
,
A.
,
Vaca-Cárdenas
,
L.
,
Pantano
,
P.
, and
Bilotta
,
E.
, “
Lesson planning by computational thinking skills in Italian pre-service teachers
,”
Inform. Educ.
18
(
1
),
69
104
(
2019
).
32.
Jensen
,
M. H.
,
Kadanoff
,
L. P.
,
Libchaber
,
A.
,
Procaccia
,
I.
, and
Stavans
,
J.
, “
Global universality at the onset of chaos: Results of a forced Rayleigh-Bénard experiment
,”
Phys. Rev. Lett.
55
(
25
),
2798
(
1985
).
33.
Langford
,
W. F.
, “
Numerical studies of torus bifurcations
,” in
Numerical Methods for Bifurcation Problems
(
Birkhäuser
,
Basel
,
1984
), pp.
285
295
.
34.
Leipnik
,
R. B.
and
Newton
,
T. A.
, “
Double strange attractors in rigid body motion with linear feedback control
,”
Phys. Lett. A
86
(
2
),
63
67
(
1981
).
35.
Liu
,
C.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
, “
A new chaotic attractor
,”
Chaos Solitons Fractals
22
(
5
),
1031
1038
(
2004
).
36.
Lorenz
,
E. N.
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
37.
Lorenz
,
E.
, “Predictability: Does the flap of a butterfly's wing in Brazil set off a tornado in Texas?” presented at the 139th Meeting of the American Association for the Advancement of Science (1972).
38.
,
J.
and
Chen
,
G.
, “
A new chaotic attractor coined
,”
Int. J. Bifurc. Chaos
12
(
03
),
659
661
(
2002
).
39.
Madan
,
R. N.
, in
Chua’s Circuit: a Paradigm for Chaos (Vol. 1)
(
World Scientific
,
1993
).
40.
Pan
,
L.
,
Zhou
,
L.
, and
Li
,
D.
, “
Synchronization of three-scroll unified chaotic system (TSUCS) and its hyper-chaotic system using active pinning control
,”
Nonlinear Dyn.
73
(
3
),
2059
2071
(
2013
).
41.
Poincaré
,
H.
,
Les méthodes nouvelles de la mécanique céleste (Vol. 3)
(
Gauthier-Villars
,
1899
).
48.
Qi
,
G.
,
Chen
,
G.
,
Du
,
S.
,
Chen
,
Z.
,
Yuan
,
Z.
, “
Analysis of a new chaotic system
,”
Physica A
352
(
2–4
),
295
308
(
2005
).
42.
Shaw
,
R.
, “
Strange attractors, chaotic behavior, and information flow
,”
Z. Nat. A
36
(
1
),
80
112
(
1981
).
43.
Vaca-Cárdenas
,
L. A.
,
Bertacchini
,
F.
,
Tavernise
,
A.
,
Gabriele
,
L.
,
Valenti
,
A.
,
Olmedo
,
D. E.
, and
Bilotta
,
E.
, “
Coding with scratch: The design of an educational setting for elementary pre-service teachers
,” in
2015 International Conference on Interactive Collaborative Learning (ICL)
(
IEEE
,
2015
), pp.
1171
1177
.
44.
Vaidyanathan
,
S.
and
Azar
,
A. T.
, “
Adaptive control and synchronization of Halvorsen circulant chaotic systems
,” in
Advances in Chaos Theory and Intelligent Control
(
Springer
,
Cham
,
2016
), pp.
225
247
.

Supplementary Material

You do not currently have access to this content.