An effective portfolio selection model is constructed on the premise of measuring accurately the risk and return on assets. According to the reality that asset returns obey the asymmetric power-law distribution, this paper first builds two fractal statistical measures, fractal expectation and fractal variance to measure the asset returns and risks, inspired by the method of measuring the curve length in the fractal theory. Then, by incorporating the fractal statistical measure into the return–risk criterion, a portfolio selection model based on the fractal statistical measure is established, namely, the fractal portfolio selection model, and the closed-form solution of the model is given. Finally, through empirical analysis, it is found that under the constraints of typical factual characteristics that the asset returns obey the asymmetric power-law distribution, the fractal portfolio is better than the traditional portfolio as a whole, which not only can improve the investment performance but also has better robustness. The validity of the fractal investment portfolio is experimentally tested.

1.
Asai
,
M.
, “
Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models
,”
J. Empir. Finance
15
(
2
),
332
341
(
2008
).
2.
Black
,
F.
and
Litterman
,
R. B.
, “
Asset allocation: Combining investor views with market equilibrium
,”
J. Fixed Income
1
(
2
),
7
18
(
1991
).
3.
Detemple
,
J.
, “
Portfolio selection: A review
,”
J. Optim. Theory Appl.
161
(
1
),
1
21
(
2014
).
4.
Eom
,
C.
,
Park
,
J. W.
,
Kim
,
Y. H.
 et al, “
Effects of the market factor on portfolio diversification: The case of market crashes
,”
Invest. Anal. J.
44
(
1
),
71
83
(
2015
).
5.
Falconer
,
K.
,
Fractal Geometry: Mathematical Foundations and Applications
, 2nd ed. (
John Wiley & Sons, Inc.
,
Chichester
,
2003
), pp.
39
45
.
6.
Gabaix
,
X.
,
Gopikrishnan
,
P.
,
Plerou
,
V.
 et al, “
A theory of power-law distributions in financial market fluctuations
,”
Nature
423
,
267
270
(
2003
).
7.
Gilbert
,
E.
and
Meiklejohn
,
L.
, “
A comparative analysis of risk measures: A portfolio optimization approach
,”
Invest. Anal. J.
48
(
3
),
223
239
(
2019
).
8.
Han
,
G. S.
,
Zhou
,
F. X.
, and
Jiang
,
H. W.
, “
Multiscale adaptive multifractal analysis and its applications
,”
Chaos
31
(
2
),
023115
(
2021
).
9.
Hernandez
,
J. A.
and
Janabi
,
M. A. M. A.
, “
Forecasting of dependence, market, and investment risks of a global index portfolio
,”
J. Forecasting
39
(
3
),
512
(
2020
).
10.
Jiang
,
Z. Q.
,
Xie
,
W. J.
,
Zhou
,
W. X.
, and
Sornette
,
D.
, “
Multifractal analysis of financial markets: A review
,”
Rep. Prog. Phys.
82
(
12
),
125901
(
2019
).
11.
Jung
,
J.
and
Kim
,
S.
, “
An adaptively managed dynamic portfolio selection model using a time-varying investment target according to the market forecast[J]
,”
J. Oper. Res. Soc.
66
(
7
),
1115
1131
(
2015
).
12.
Kroll
,
Y.
,
Levy
,
H.
, and
Markowitz
,
H. M.
, “
Mean-variance versus direct utility maximization
,”
J. Finance
39
(
1
),
47
61
(
1984
).
13.
Ku
,
S.
,
Lee
,
C.
,
Chang
,
W.
 et al, “
Fractal structure in the S&P500: A correlation-based threshold network approach
,”
Chaos Solitons Fractals
137
,
109848
(
2020
).
14.
Maleki
,
M.
,
Wraith
,
D.
,
Mahmoudi
M. R.
 et al, “
Asymmetric heavy-tailed vector auto-regressive processes with application to financial data
,”
J. Stat. Comput. Simul.
90
(
2
),
324
340
(
2020
).
15.
Mandelbrot
,
B. B.
, “
How long is the coast of britain? Statistical self-similarity and fractional dimension
,”
Science
156
(
3775
),
636
638
(
1967
).
16.
Markowitz
,
H. M.
, “
Portfolio selection
,”
J. Finance
7
(
1
),
77
91
(
1952
).
17.
Munro
,
B.
and
Bradfield
,
D.
, “
Putting the squeeze on the sample covariance matrix for portfolio construction
,”
Invest. Anal. J.
45
(
1
),
47
62
(
2016
).
18.
Nystrup
,
P.
,
Boyd
,
S.
,
Lindström
,
E.
 et al, “
Multi-period portfolio selection with drawdown control
,”
Ann. Oper. Res.
282
(
1–2
),
245
271
(
2019
).
19.
Plessis
,
H. D.
and
Rensburg
,
P. V.
, “
Diversification and the realised volatility of equity portfolios
,”
Invest. Anal. J.
46
(
3
),
213
234
(
2017
).
20.
Samuelson
,
P. A.
, “
General proof that diversification pays
,”
J. Financial Quant. Anal.
2
(
1
),
1
13
(
1967
).
21.
Scheinkman
,
J. A.
, “
Nonlinear dynamics in economics and finance
,”
Philos. Trans. R. Soc. London A
346
(
1679
),
235
250
(
1994
).https://www.jstor.org/stable/54325
22.
Stoyanov
,
S. V.
,
Racheva-Iotova
,
B.
,
Rachev
,
S. T.
 et al, “
Stochastic models for risk estimation in volatile markets: A survey
,”
Ann. Oper. Res.
176
(
1
),
293
309
(
2010
).
23.
Tao
,
W.
and
Kang
,
H. C.
, “
The fractal dimension of complex networks: A review
,”
Inf. Fusion
73
(
2
),
87
(
2021
).
24.
Tilfani
,
O.
,
Ferreira
,
P.
, and
El Boukfaoui
,
M.
, “
Building multi-scale portfolios and efficient market frontiers using fractal regressions
,”
Physica A
532
,
121758
(
2019
).
25.
Wang
,
H. Y.
and
Wu
,
Z.
, “
Mean-variance portfolio selection with discontinuous prices and random horizon in an incomplete market
,”
Sci. China Inf. Sci.
63
(
7
),
179202
(
2020
).
26.
Warusawitharana
,
M.
, “
Time-varying volatility and the power law distribution of stock returns
,”
J. Empir. Finance
49
,
123
141
(
2018
).
27.
Wu
,
X.
 et al, “
Fractal statistical measure and portfolio model optimization under power-law distribution
,”
North Am. J. Economic Finance
58
,
101496
(
2021
).
28.
Wu
,
X.
,
Song
,
G. H.
,
Deng
,
Y.
 et al, “
Study on conversion between momentum and contrarian based on fractal game
,”
Fractals
23
(
3
),
1550015
(
2015
).
29.
Yeliz
,
K.
,
Yu
,
D. Z.
, and
Khan
,
M.
, “
Characterizing complexity and self-similarity based on fractal and entropy analyses for stock market forecast modelling
,”
Expert Syst. Appl.
144
,
113098
(
2020
).
30.
Zhang
,
L.
,
Li
,
Y.
,
Wu
,
X.
 et al, “
Research on fractal portfolio model under power-law distribution of return rate
,”
Economic Comput. Economic Cybernetics Stud. Res.
55
(
1
),
219
232
(
2021
).
31.
Zhang
,
Y.
,
Li
,
X.
, and
Guo
,
S.
, “
Portfolio selection problems with Markowitz’s mean-variance framework: A review of literature
,”
Fuzzy Optimization Decision Making
17
(
2
),
125
158
(
2018
).
You do not currently have access to this content.