In this work, we propose a multilayer control protocol for the synchronization of network dynamical systems under limited resources. In addition to the layer where the interactions of the system take place, i.e., the backbone network, we propose a second, adaptive layer, where the edges are added or removed according to the edge snapping mechanism. Different from classic edge snapping, the inputs to the edge dynamics are modified to cap the number of edges that can be activated. After studying the local stability of the overall network dynamics, we illustrate the effectiveness of the approach on a network of Rössler oscillators and then show its robustness in a more general setting, exemplified with a model of the Italian high-voltage power grid.

1
D.
Ghosh
,
M.
Frasca
,
A.
Rizzo
,
S.
Majhi
,
S.
Rakshit
,
K.
Alfaro-Bittner
, and
S.
Boccaletti
, “
The synchronized dynamics of time-varying networks
,”
Phys. Rep.
949
,
1
63
(
2022
).
2
F.
Della Rossa
and
P.
De Lellis
, “
Synchronization and pinning control of stochastic coevolving networks
,”
Annu. Rev. Control.
54
,
147
160
(
2022
).
3
D. D.
Šiljak
, “
On stability of large-scale systems under structural perturbations
,”
IFAC Proc. Vol.
6
(
2
),
440
443
(
1973
).
4
D.
Šiljak
, “
Dynamic graphs
,”
Nonlinear Anal.: Hybrid Syst.
2
(
2
),
544
567
(
2008
).
5
J. H.
Holland
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
(
MIT Press
,
1992
).
6
T. E.
Gorochowski
,
M. D.
Bernardo
, and
C. S.
Grierson
, “
Evolving dynamical networks: A formalism for describing complex systems
,”
Complexity
17
(
3
),
18
25
(
2012
).
7
P.
DeLellis
,
M.
Di Bernardo
,
T. E.
Gorochowski
, and
G.
Russo
, “
Synchronization and control of complex networks via contraction, adaptation and evolution
,”
IEEE Circ. Syst. Mag.
10
(
3
),
64
82
(
2010
).
8
F. G.
Hillary
and
J. H.
Grafman
, “
Injured brains and adaptive networks: The benefits and costs of hyperconnectivity
,”
Trends Cognit. Sci.
21
(
5
),
385
401
(
2017
).
9
H.
Sayama
,
I.
Pestov
,
J.
Schmidt
,
B. J.
Bush
,
C.
Wong
,
J.
Yamanoi
, and
T.
Gross
, “
Modeling complex systems with adaptive networks
,”
Comp. Math. Appl.
65
(
10
),
1645
1664
(
2013
).
10
C.
Zhou
and
J.
Kurths
, “
Dynamical weights and enhanced synchronization in adaptive complex networks
,”
Phys. Rev. Lett.
96
(
16
),
164102
(
2006
).
11
T.
Chen
and
X.
Liu
, “Network synchronization with an adaptive coupling strength,” arXiv preprint math/0610580 (2006).
12
P.
De Lellis
,
M.
Di Bernardo
,
F.
Sorrentino
, and
A.
Tierno
, “
Adaptive synchronization of complex networks
,”
Int. J. Comp. Math.
85
(
8
),
1189
1218
(
2008
).
13
T.
Aoki
and
T.
Aoyagi
, “
Co-evolution of phases and connection strengths in a network of phase oscillators
,”
Phys. Rev. Lett.
102
(
3
),
034101
(
2009
).
14
S.
Assenza
,
R.
Gutiérrez
,
J.
Gómez-Gardenes
,
V.
Latora
, and
S.
Boccaletti
, “
Emergence of structural patterns out of synchronization in networks with competitive interactions
,”
Sci. Rep.
1
,
99
(
2011
).
15
R.
Gutiérrez
,
A.
Amann
,
S.
Assenza
,
J.
Gómez-Gardenes
,
V.
Latora
, and
S.
Boccaletti
, “
Emerging meso-and macroscales from synchronization of adaptive networks
,”
Phys. Rev. Lett.
107
(
23
),
234103
(
2011
).
16
E.
Estrada
, “
Network robustness to targeted attacks. The interplay of expansibility and degree distribution
,”
Eur. Phys. J. B
52
(
4
),
563
574
(
2006
).
17
P.
DeLellis
,
A.
DiMeglio
,
F.
Garofalo
, and
F.
Lo Iudice
, “
The evolving cobweb of relations among partially rational investors
,”
PLoS One
12
(
2
),
e0171891
(
2017
).
18
P.
DeLellis
,
M.
di Bernardo
, and
M.
Porfiri
, “
Pinning control of complex networks via edge snapping
,”
Chaos
21
(
3
),
033119
(
2011
).
19
P.
DeLellis
,
F.
Garofalo
,
M.
Porfiri
et al., “
Evolution of complex networks via edge snapping
,”
IEEE Trans. Circ. Syst. I
57
(
8
),
2132
2143
(
2010
).
20
D. A.
Burbano
and
M.
di Bernardo
, “
Distributed PID control for consensus of homogeneous and heterogeneous networks
,”
IEEE Trans. Control Netw. Syst.
2
(
2
),
154
163
(
2014
).
21
D. A.
Burbano
and
M.
di Bernardo
, “
Multiplex PI control for consensus in networks of heterogeneous linear agents
,”
Automatica
67
,
310
320
(
2016
).
22
L. V.
Gambuzza
,
M.
Frasca
, and
J.
Gomez-Gardenes
, “
Intra-layer synchronization in multiplex networks
,”
Europhys. Lett.
110
(
2
),
20010
(
2015
).
23
C. I.
Del Genio
,
J.
Gómez-Gardeñes
,
I.
Bonamassa
, and
S.
Boccaletti
, “
Synchronization in networks with multiple interaction layers
,”
Sci. Adv.
2
(
11
),
e1601679
(
2016
).
24
I.
Belykh
,
D.
Carter
, and
R.
Jeter
, “
Synchronization in multilayer networks: When good links go bad
,”
SIAM J. Appl. Dyn. Syst.
18
(
4
),
2267
2302
(
2019
).
25
L.
Tang
,
X.
Wu
,
J.
,
J.-A.
Lu
, and
R. M.
D’Souza
, “
Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators
,”
Phys. Rev. E
99
(
1
),
012304
(
2019
).
26
Note that the invariance of the synchronization manifold is guaranteed by the diffusive nature of the coupling protocols in (1).
27
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
(
10
),
2109
(
1998
).
28
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
(
4–5
),
175
308
(
2006
).
29
M.
Frasca
and
L. V.
Gambuzza
, “
Control of cascading failures in dynamical models of power grids
,”
Chaos Soliton. Fract.
153
,
111460
(
2021
).
30
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
European Phys. J. B
61
(
4
),
485
491
(
2008
).
31
T.
Nishikawa
and
A. E.
Motter
, “
Comparative analysis of existing models for power-grid synchronization
,”
New J. Phys.
17
(
1
),
015012
(
2015
).
32
B.
Schäfer
,
D.
Witthaut
,
M.
Timme
, and
V.
Latora
, “
Dynamically induced cascading failures in power grids
,”
Nat. Commun.
9
(
1
),
1
13
(
2018
).
33
Y.
Yang
and
A. E.
Motter
, “
Cascading failures as continuous phase-space transitions
,”
Phys. Rev. Lett.
119
(
24
),
248302
(
2017
).
34
GENI—Global Energy Network Institute, “Map of Italian electricity grid,” see https://www.geni.org/globalenergy/library/national_energy_grid/italy/italiannationalelectricitygrid.shtml (last accessed December 21, 2020).
35
V.
Rosato
,
S.
Bologna
, and
F.
Tiriticco
, “
Topological properties of high-voltage electrical transmission networks
,”
Electr. Power Syst. Res.
77
(
2
),
99
105
(
2007
).
36
L.
Fortuna
,
M.
Frasca
, and
A.
Sarra Fiore
, “
A network of oscillators emulating the Italian high-voltage power grid
,”
Int. J. Mod. Phys. B
26
(
25
),
1246011
(
2012
).
37
L.
Tumash
,
S.
Olmi
, and
E.
Schöll
, “
Stability and control of power grids with diluted network topology
,”
Chaos
29
(
12
),
123105
(
2019
).
38
C. H.
Totz
,
S.
Olmi
, and
E.
Schöll
, “
Control of synchronization in two-layer power grids
,”
Phys. Rev. E
102
(
2
),
022311
(
2020
).
You do not currently have access to this content.