Quantifying the predictability limits of chaotic systems and their forecast models has attracted much interest among scientists. The attractor radius (AR) and the global attractor radius (GAR), as intrinsic properties of a chaotic system, were introduced in the most recent work (Li et al. 2018). It has been shown that both the AR and GAR provide more accurate, objective metrics to access the global and local predictability limits of forecast models compared with the traditional error saturation or the asymptotic value. In this work, we consider the AR and GAR of fractional Lorenz systems, introduced in Grigorenko and Grigorenko [Phys. Rev. Lett. 91, 034101 (2003)] using the Caputo fractional derivatives and their application to the quantification of the predictability limits. A striking finding is that a fractional Lorenz system with smaller Σ, which is a sum of the orders of all involved equal derivatives, has smaller attractor radius and shorter predictability limits. In addition, we present a new numerical algorithm for the fractional Lorenz system, which is the generalized version of the standard fourth-order Runge–Kutta scheme.

1.
Amblard
,
F.
,
Maggs
,
A.
,
Yurke
,
B.
,
Pargellis
,
A.
, and
Leibler
,
S.
, “
Subdiffusion and anomalous local viscoelasticity in actin networks
,”
Phys. Rev. Lett.
77
,
4470
4473
(
1996
).
2.
Bagley
,
R. L.
and
Calico
,
R. A.
, “
Fractional order state equations for the control of viscoelastically damped structures
,”
J. Guid.
14
,
304
311
(
1991
).
3.
Bauer
,
P.
,
Thorpe
,
A.
, and
Brunet
,
G.
, “
The quiet revolution of numerical weather prediction
,”
Nature
525
,
47
55
(
2015
).
4.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
, “
Application of a fractional advection-dispersion equation
,”
Water Resour. Res.
36
,
1403
1412
, https://doi.org/10.1029/2000WR900031 (
2000a
).
5.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
, “
The fractional-order governing equation of Lévy motion
,”
Water Resour. Res.
36
,
1413
1423
, https://doi.org/10.1029/2000WR900032 (
2000b
).
6.
Bouchaud
,
J.-P.
and
Georges
,
A.
, “
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,”
Phys. Rep.
195
,
127
293
(
1990
).
7.
Buizza
,
R.
, “
Horizontal resolution impact on short- and long-range forecast error
,”
Q. J. R. Meteorol. Soc.
136
,
1020
1035
(
2010
).
8.
Charney
,
J. G.
, “
The feasibility of a global observation and analysis experiment
,”
Bull. Amer. Meteor. Soc.
47
,
200
230
(
1966
).
9.
Cuomo
,
K. M.
and
Oppenheim
,
A. V.
, “
Circuit implementation of synchronized chaos with applications to communications
,”
Phys. Rev. Lett.
71
,
65
(
1993
).
10.
Dalcher
,
A.
and
Kalnay
,
E.
, “
Error growth and predictability in operational ECMWF forecasts
,”
Tellus A
39
,
474
491
(
1987
).
11.
Dentz
,
M.
,
Cortis
,
A.
,
Scher
,
H.
, and
Berkowitz
,
B.
, “
Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport
,”
Adv. Water Resour.
27
,
155
173
(
2004
).
12.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
, “
A predictor-corrector approach for the numerical solution of fractional differential equations
,”
Nonlinear Dyn.
29
,
3
22
(
2002
).
13.
Ding
,
R.
and
Li
,
J.
, “
Nonlinear finite-time Lyapunov exponent and predictability
,”
Phys. Lett. A
364
,
396
400
(
2007
).
14.
Ding
,
R.
and
Li
,
J.
, “
Study on the regularity of predictability limit of chaotic systems with different initial errors
,”
Acta. Phys. Sin.
57
,
7494
7499
(
2008
).
15.
Ding
,
R.
and
Li
,
J.
, “
Relationships between the limit of predictability and initial error in the uncoupled and coupled Lorenz models
,”
Adv. Atmos. Sci.
29
,
1078
1088
(
2012
).
16.
Dmowska
,
R.
and
Saltzman
,
B.
,
Advances in Geophysics: Long-range Persistence in Geophysical Time Series
(
Academic Press
,
1999
), Vol. 40.
17.
Doan
,
T. S.
and
Kloeden
,
P. E.
, “
Attractors of Caputo fractional differential equations with triangular vector fields
,”
Fract. Calc. Appl. Anal.
25
,
720
734
(
2022
).
18.
Duan
,
W.
and
Zhao
,
P.
, “
Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach
,”
Clim. Dyn.
44
,
2351
2367
(
2015
).
19.
Eichner
,
J. F.
,
Koscielny-Bunde
,
E.
,
Bunde
,
A.
,
Havlin
,
S.
, and
Schellnhuber
,
H. -J.
, “
Power-law persistence and trends in the atmosphere: A detailed study of long temperature records
,”
Phys. Rev. E
68
,
046133
(
2003
).
20.
Goychuk
,
I.
,
Heinsalu
,
E.
,
Patriarca
,
M.
,
Schmid
,
G.
, and
Hänggi
,
P.
, “
Current and universal scaling in anomalous transport
,”
Phys. Rev. E
73
,
020101
(
2006
).
21.
Grigorenko
,
I.
and
Grigorenko
,
E.
, “
Chaotic dynamics of the fractional Lorenz system
,”
Phys. Rev. Lett.
91
,
034101
(
2003
).
22.
Ichise
,
M.
,
Nagayanagi
,
Y.
, and
Kojima
,
T.
, “
An analog simulation of non-integer order transfer functions for analysis of electrode processes
,”
J. Electroanal. Chem.
33
,
253
265
(
1971
).
23.
Kalnay
,
E.
,
Atmospheric Modeling, Data Assimilation and Predictability
(
Cambridge University Press
,
2003
).
24.
Klages
,
R.
,
Radons
,
G.
, and
Sokolov
,
I. M.
,
Anomalous Transport: Foundations and Applications
(
Wiley-VCH
,
2008
).
25.
Koeller
,
R.
, “
Applications of fractional calculus to the theory of viscoelasticity
,”
J. Appl. Mech.
51
,
299
307
(
1984
).
26.
Koscielny-Bunde
,
E.
,
Bunde
,
A.
,
Havlin
,
S.
,
Roman
,
H. E.
,
Goldreich
,
Y.
, and
Schellnhuber
,
H.-J.
, “
Indication of a universal persistence law governing atmospheric variability
,”
Phys. Rev. Lett.
81
,
729
(
1998
).
27.
Leith
,
C.
, “
Theoretical skill of Monte Carlo forecasts
,”
Mon. Weather Rev.
102
,
409
418
(
1974
).
28.
Li
,
J.
and
Chou
,
J.
, “
The property of solutions for the equations of large-scale atmosphere with the non-stationary external forcings
,”
China Sci. Bull.
41
,
587
590
(
1996
).
29.
Li
,
J.
and
Chou
,
J.
, “
Existence of the atmosphere attractor
,”
Sci. China, Ser. D: Earth Sci.
40
,
215
220
(
1997a
).
30.
Li
,
J.
and
Chou
,
J.
, “
Further study on the properties of operators of atmospheric equations and the existence of attractor
,”
Acta. Meteorol. Sin.
11
,
216
223
(
1997b
).
31.
Li
,
J.
and
Wang
,
S.
, “
Some mathematical and numerical issues in geophysical fluid dynamics and climate dynamics
,”
Commun. Comput. Phys.
3
,
759
793
(
2008
).
32.
Li
,
J.
and
Ding
,
R.
, “
Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs
,”
Mon. Weather Rev.
139
,
3265
3283
(
2011
).
33.
Li
,
J.
and
Ding
,
R.
, “
Temporal–spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans
,”
Int. J. Climatol.
33
,
1936
1947
(
2013
).
34.
Li
,
J.
,
Feng
,
J.
, and
Ding
,
R.
, “
Attractor radius and global attractor radius and their application to the quantification of predictability limits
,”
Clim. Dyn.
51
,
2359
2374
(
2018
).
35.
Li
,
Y.
and
Wang
,
Y.
, “
The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay
,”
J. Differ. Equ.
266
,
3514
3558
(
2019
).
36.
Lorenz
,
E. N.
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
37.
Lorenz
,
E. N.
, “
A study of the predictability of a 28-variable atmospheric model
,”
Tellus
17
,
321
333
(
1965
).
38.
Mainardi
,
F.
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
(
World Scientific Publishing Company
,
2010
).
39.
Mandelbrot
,
B.
, “
Some noises with i/f spectrum, a bridge between direct current and white noise
,”
IEEE Trans. Inform. Theory
13
,
289
298
(
1967
).
40.
Marks
,
R.
and
Hall
,
M.
, “
Differintegral interpolation from a bandlimited signal’s samples
,”
IEEE Trans. Acoust. Speech Signal Process.
29
,
872
877
(
1981
).
41.
Meerschaert
,
M. M.
and
Scalas
,
E.
, “
Coupled continuous time random walks in finance
,”
Phys. A
370
,
114
118
(
2006
).
42.
Mu
,
M.
,
Duan
,
W.
, and
Tang
,
Y.
, “
The predictability of atmospheric and oceanic motions: Retrospect and prospects
,”
Sci. China Earth Sci.
60
,
2001
2012
(
2017
).
43.
Mu
,
M.
,
Duan
,
W.
, and
Wang
,
B.
, “
Conditional nonlinear optimal perturbation and its applications
,”
Nonlinear Process. Geophys.
10
,
493
501
(
2003
).
44.
Mu
,
M.
,
Duan
,
W.
,
Wang
,
Q.
, and
Zhang
,
R.
, “
An extension of conditional nonlinear optimal perturbation approach and its applications
,”
Nonlinear Process. Geophys.
17
,
211
(
2010
).
45.
Ott
,
E.
, “
Strange attractors and chaotic motions of dynamical systems
,”
Rev. Mod. Phys.
53
,
655
(
1981
).
46.
Podlubny
,
I.
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
(
Academic Press
,
1999
).
47.
Ruelle
,
D.
and
Takens
,
F.
, “
On the nature of turbulence
,”
Commun. Math. Phys.
12
,
1
44
(
1971
).
48.
Schumer
,
R.
,
Benson
,
D. A.
,
Meerschaert
,
M. M.
, and
Baeumer
,
B.
, “
Multiscaling fractional advection-dispersion equations and their solutions
,”
Water Resour. Res.
39
,
1022
(
2003
).
49.
Simmons
,
A. J.
and
Hollingsworth
,
A.
, “
Some aspects of the improvement in skill of numerical weather prediction
,”
Q. J. R. Meteorol. Soc.
128
,
647
677
(
2002
).
50.
Smagorinsky
,
J.
, “
Problems and promises of deterministic extended range forecasting
,”
Bull Am. Meteorol. Soc.
50
,
286
312
(
1969
).
51.
Sun
,
H.
,
Abdelwahab
,
A.
, and
Onaral
,
B.
, “
Linear approximation of transfer function with a pole of fractional power
,”
IEEE Trans. Automat. Contr.
29
,
441
444
(
1984
).
52.
Syroka
,
J.
and
Toumi
,
R.
, “
Scaling and persistence in observed and modeled surface temperature
,”
Geophys. Res. Lett.
28
,
3255
3258
, https://doi.org/10.1029/\break 2000GL012273 (
2001
).
53.
Vannitsem
,
S.
and
Lucarini
,
V.
, “
Statistical and dynamical properties of covariant Lyapunov vectors in a coupled atmosphere-ocean model—Multiscale effects, geometric degeneracy, and error dynamics
,”
J. Phys. A
49
,
224001
(
2016
).
54.
Vyushin
,
D. I.
and
Kushner
,
P. J.
, “
Power-law and long-memory characteristics of the atmospheric general circulation
,”
J. Clim.
22
,
2890
2904
(
2009
).
55.
Vyushin
,
D. I.
,
Kushner
,
P. J.
, and
Mayer
,
J.
, “
On the origins of temporal power-law behavior in the global atmospheric circulation
,”
Geophys. Res. Lett.
36
,
L14706
(
2009
).
56.
Wang
,
Y.
,
Xu
,
J.
, and
Kloeden
,
P. E.
, “
Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative
,”
Nonlinear Anal. Theory Methods Appl.
135
,
205
222
(
2016
).
57.
Yuan
,
N.
,
Fu
,
Z.
, and
Liu
,
S.
, “
Long-term memory in climate variability: A new look based on fractional integral techniques
,”
J. Geophys. Res. Atmos.
118
,
12962
12969
, https://doi.org/10.1002/2013JD020776 (
2013
).
58.
Zaslavsky
,
G. M.
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
,
461
580
(
2002
).
You do not currently have access to this content.