Hypergraphs that can depict interactions beyond pairwise edges have emerged as an appropriate representation for modeling polyadic relations in complex systems. With the recent surge of interest in researching hypergraphs, the centrality problem has attracted much attention due to the challenge of how to utilize higher-order structure for the definition of centrality metrics. In this paper, we propose a new centrality method (HGC) on the basis of the gravity model as well as a semi-local HGC, which can achieve a balance between accuracy and computational complexity. Meanwhile, two comprehensive evaluation metrics, i.e., a complex contagion model in hypergraphs, which mimics the group influence during the spreading process and network s-efficiency based on the higher-order distance between nodes, are first proposed to evaluate the effectiveness of our methods. The results show that our methods can filter out nodes that have fast spreading ability and are vital in terms of hypergraph connectivity.

1.
E.
Ramadan
,
A.
Tarafdar
, and
A.
Pothen
, “A hypergraph model for the yeast protein complex network,” in Proceedings of the 18th International Parallel and Distributed Processing Symposium, 2004 (IEEE, 2004), p. 189.
2.
R. I.
Lung
,
N.
Gaskó
, and
M. A.
Suciu
, “
A hypergraph model for representing scientific output
,”
Scientometrics
117
,
1361
1379
(
2018
).
3.
P.
Bonacich
,
A. C.
Holdren
, and
M.
Johnston
, “
Hyper-edges and multidimensional centrality
,”
Soc. Networks
26
,
189
203
(
2004
).
4.
M. T.
Schaub
,
A. R.
Benson
,
P.
Horn
,
G.
Lippner
, and
A.
Jadbabaie
, “
Random walks on simplicial complexes and the normalized Hodge 1-Laplacian
,”
SIAM Rev.
62
,
353
391
(
2020
).
5.
T.
Carletti
,
F.
Battiston
,
G.
Cencetti
, and
D.
Fanelli
, “
Random walks on hypergraphs
,”
Phys. Rev. E
101
,
022308
(
2020
).
6.
R.
Mulas
,
C.
Kuehn
, and
J.
Jost
, “
Coupled dynamics on hypergraphs: Master stability of steady states and synchronization
,”
Phys. Rev. E
101
,
062313
(
2020
).
7.
D. C.
Bell
,
J. S.
Atkinson
, and
J. W.
Carlson
, “
Centrality measures for disease transmission networks
,”
Soc. Networks
21
,
1
21
(
1999
).
8.
Q.
Zeng
,
Y.
Liu
,
M.
Tang
, and
J.
Gong
, “
Identifying super-spreaders in information–epidemic coevolving dynamics on multiplex networks
,”
Knowledge-Based Syst.
229
,
107365
(
2021
).
9.
C.
Liu
,
Y.
Ma
,
J.
Zhao
,
R.
Nussinov
,
Y.-C.
Zhang
,
F.
Cheng
, and
Z.-K.
Zhang
, “
Computational network biology: Data, models, and applications
,”
Phys. Rep.
846
,
1
66
(
2020
).
10.
S. M.
Aghdam
and
N. J.
Navimipour
, “
Opinion leaders selection in the social networks based on trust relationships propagation
,”
Karbala Int. J. Mod. Sci.
2
,
88
97
(
2016
).
11.
D.
Shah
and
T.
Zaman
, “
Rumors in a network: Who’s the culprit?
,”
IEEE Trans. Inf. Theory
57
,
5163
5181
(
2011
).
12.
M. U.
Ilyas
and
H.
Radha
, “Identifying influential nodes in online social networks using principal component centrality,” in 2011 IEEE International Conference on Communications (ICC) (IEEE, 2011), pp. 1–5.
13.
A.
Mochalova
and
A.
Nanopoulos
, “
A targeted approach to viral marketing
,”
Electron. Commer. Res. Appl.
13
,
283
294
(
2014
).
14.
Y.
Du
,
C.
Gao
,
Y.
Hu
,
S.
Mahadevan
, and
Y.
Deng
, “
A new method of identifying influential nodes in complex networks based on TOPSIS
,”
Physica A
399
,
57
69
(
2014
).
15.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
(
2002
).
16.
G.
Cimini
,
T.
Squartini
,
F.
Saracco
,
D.
Garlaschelli
,
A.
Gabrielli
, and
G.
Caldarelli
, “
The statistical physics of real-world networks
,”
Nat. Rev. Phys.
1
,
58
71
(
2019
).
17.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
18.
M. M.
Mayfield
and
D. B.
Stouffer
, “
Higher-order interactions capture unexplained complexity in diverse communities
,”
Nat. Ecol. Evol.
1
,
1
7
(
2017
).
19.
K.
Kapoor
,
D.
Sharma
, and
J.
Srivastava
, “Weighted node degree centrality for hypergraphs,” in 2013 IEEE 2nd Network Science Workshop (NSW) (IEEE, 2013), pp. 152–155.
20.
F.
Tudisco
and
D. J.
Higham
, “
Node and edge nonlinear eigenvector centrality for hypergraphs
,”
Commun. Phys.
4
,
201
(
2021
).
21.
C.
Berge
,
Graphs and Hypergraphs
(
Elsevier
,
1973
).
22.
E.
Estrada
and
J. A.
Rodríguez-Velázquez
, “
Subgraph centrality and clustering in complex hyper-networks
,”
Physica A
364
,
581
594
(
2006
).
23.
A. R.
Benson
, “
Three hypergraph eigenvector centralities
,”
SIAM J. Math. Data Sci.
1
,
293
312
(
2019
).
24.
K.
Kovalenko
,
M.
Romance
,
E.
Vasilyeva
,
D.
Aleja
,
R.
Criado
,
D.
Musatov
,
A.
Raigorodskii
,
J.
Flores
,
I.
Samoylenko
,
K.
Alfaro-Bittner
, and
M.
Perc
, “
Vector centrality in hypergraphs
,”
Chaos Soliton. Fract.
162
,
112397
(
2022
).
25.
S. G.
Aksoy
,
C.
Joslyn
,
C. O.
Marrero
,
B.
Praggastis
, and
E.
Purvine
, “
Hypernetwork science via high-order hypergraph walks
,”
EPJ Data Sci.
9
,
16
(
2020
).
26.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
27.
J.
Zhao
,
Y.
Song
,
F.
Liu
, and
Y.
Deng
, “
The identification of influential nodes based on structure similarity
,”
Connect. Sci.
33
,
201
218
(
2021
).
28.
Z.
Li
,
T.
Ren
,
X.
Ma
,
S.
Liu
,
Y.
Zhang
, and
T.
Zhou
, “
Identifying influential spreaders by gravity model
,”
Sci. Rep.
9
,
8387
(
2019
).
29.
Z.
Li
and
X.
Huang
, “
Identifying influential spreaders in complex networks by an improved gravity model
,”
Sci. Rep.
11
,
22194
(
2021
).
30.
J.
Bi
,
J.
Jin
,
C.
Qu
,
X.
Zhan
,
G.
Wang
, and
G.
Yan
, “
Temporal gravity model for important node identification in temporal networks
,”
Chaos Soliton. Fract.
147
,
110934
(
2021
).
31.
F.
Cheng
,
C.
Liu
,
C.-C.
Lin
,
J.
Zhao
,
P.
Jia
,
W.-H.
Li
, and
Z.
Zhao
, “
A gene gravity model for the evolution of cancer genomes: A study of 3,000 cancer genomes across 9 cancer types
,”
PLoS Comput. Biol.
11
,
e1004497
(
2015
).
32.
Z.-K.
Bao
,
J.-G.
Liu
, and
H.-F.
Zhang
, “
Identifying multiple influential spreaders by a heuristic clustering algorithm
,”
Phys. Lett. A
381
,
976
983
(
2017
).
33.
L.
Fei
,
Q.
Zhang
, and
Y.
Deng
, “
Identifying influential nodes in complex networks based on the inverse-square law
,”
Physica A
512
,
1044
1059
(
2018
).
34.
Q.
Shang
,
Y.
Deng
, and
K. H.
Cheong
, “
Identifying influential nodes in complex networks: Effective distance gravity model
,”
Inform. Sci.
577
,
162
179
(
2021
).
35.
P.-L.
Yang
,
G.-Q.
Xu
,
Q.
Yu
, and
J.-W.
Guo
, “
An adaptive heuristic clustering algorithm for influence maximization in complex networks
,”
Chaos
30
,
093106
(
2020
).
36.
H.
Zhang
,
S.
Zhong
,
Y.
Deng
, and
K. H.
Cheong
, “
LFIC: Identifying influential nodes in complex networks by local fuzzy information centrality
,”
IEEE Trans. Fuzzy Syst.
30
(
8
),
1063
6706
(
2021
).
37.
In particular, the line graph L(H) is a graph of M nodes. A node and a hyperedge in H=(V,E) are mapped to an edge and a node in L(H), respectively. That is to say, there is an edge between node vg and vq in L(H) if and only if egeq in H.
38.
F.
Hu
,
L.
Ma
,
X.-X.
Zhan
,
Y.
Zhou
,
C.
Liu
,
H.
Zhao
, and
Z.-K.
Zhang
, “
The aging effect in evolving scientific citation networks
,”
Scientometrics
126
,
4297
4309
(
2021
).
39.
J.-W.
Wang
,
L.-L.
Rong
,
Q.-H.
Deng
, and
J.-Y.
Zhang
, “
Evolving hypernetwork model
,”
Eur. Phys. J. B
77
,
493
498
(
2010
).
40.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
,
2485
(
2019
).
41.
B.
Jhun
,
M.
Jo
, and
B.
Kahng
, “
Simplicial SIS model in scale-free uniform hypergraph
,”
J. Stat. Mech.: Theory Exp.
2019
,
123207
(
2019
).
42.
N. W.
Landry
and
J. G.
Restrepo
, “
The effect of heterogeneity on hypergraph contagion models
,”
Chaos
30
,
103117
(
2020
).
43.
G. F.
de Arruda
,
G.
Petri
, and
Y.
Moreno
, “
Social contagion models on hypergraphs
,”
Phys. Rev. Res.
2
,
023032
(
2020
).
44.
B.
Jhun
, “
Effective epidemic containment strategy in hypergraphs
,”
Phys. Rev. Res.
3
,
033282
(
2021
).
45.
G.
Lee
,
M.
Choe
, and
K.
Shin
, “How do hyperedges overlap in real-world hypergraphs?-patterns, measures, and generators,” in Proceedings of the Web Conference 2021 (Association for Computing Machinery, 2021), pp. 3396–3407.
46.
M. E.
Aktas
,
T.
Nguyen
,
S.
Jawaid
,
R.
Riza
, and
E.
Akbas
, “
Identifying critical higher-order interactions in complex networks
,”
Sci. Rep.
11
,
21288
(
2021
).
47.
A. G.
Nikolaev
,
R.
Razib
, and
A.
Kucheriya
, “
On efficient use of entropy centrality for social network analysis and community detection
,”
Soc. Networks
40
,
154
162
(
2015
).
48.
T.
Qiao
,
W.
Shan
, and
C.
Zhou
, “
How to identify the most powerful node in complex networks? a novel entropy centrality approach
,”
Entropy
19
,
614
(
2017
).
49.
S.
Kundu
,
C.
Murthy
, and
S. K.
Pal
, “A new centrality measure for influence maximization in social networks,” in International Conference on Pattern Recognition and Machine Intelligence (Springer, 2011), pp. 242–247.
50.
Z.
Wang
,
C.
Sun
,
G.
Yuan
,
X.
Rui
, and
X.
Yang
, “
A neighborhood link sensitive dismantling method for social networks
,”
J. Comput. Sci.
43
,
101129
(
2020
).
51.
X.-L.
Ren
,
N.
Gleinig
,
D.
Helbing
, and
N.
Antulov-Fantulin
, “
Generalized network dismantling
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
6554
6559
(
2019
).
You do not currently have access to this content.