Hurricanes—and more broadly tropical cyclones—are high-impact weather phenomena whose adverse socio-economic and ecosystem impacts affect a considerable part of the global population. Despite our reasonably robust meteorological understanding of tropical cyclones, we still face outstanding challenges for their numerical simulations. Consequently, future changes in the frequency of occurrence and intensity of tropical cyclones are still debated. Here, we diagnose possible reasons for the poor representation of tropical cyclones in numerical models, by considering the cyclones as chaotic dynamical systems. We follow 197 tropical cyclones which occurred between 2010 and 2020 in the North Atlantic using the HURDAT2 and ERA5 data sets. We measure the cyclones instantaneous number of active degrees of freedom (local dimension) and the persistence of their sea-level pressure and potential vorticity fields. During the most intense phases of the cyclones, and specifically when cyclones reach hurricane strength, there is a collapse of degrees of freedom and an increase in persistence. The large dependence of hurricanes dynamical characteristics on intensity suggests the need for adaptive parametrization schemes which take into account the dependence of the cyclone’s phase, in analogy with high-dissipation intermittent events in turbulent flows.

1.
A. B.
Smith
and
R. W.
Katz
, “
US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases
,”
Nat. Hazards
67
,
387
410
(
2013
).
2.
A.
Grinsted
,
P.
Ditlevsen
, and
J. H.
Christensen
, “
Normalized US hurricane damage estimates using area of total destruction, 1900–2018
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
23942
23946
(
2019
).
3.
E. K.
Chang
and
Y.
Guo
, “
Is the number of north atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations?
,”
Geophys. Res. Lett.
34
,
L14801
, https://doi.org/10.1029/2007GL030169 (
2007
).
4.
J.
Kossin
,
T.
Hall
,
T.
Knutson
,
K.
Kunkel
,
R.
Trapp
,
D.
Waliser
, and
M.
Wehner
, “Extreme storms,” (2017).
5.
M. J.
Roberts
,
J.
Camp
,
J.
Seddon
,
P. L.
Vidale
,
K.
Hodges
,
B.
Vannière
,
J.
Mecking
,
R.
Haarsma
,
A.
Bellucci
,
E.
Scoccimarro
et al., “
Projected future changes in tropical cyclones using the CMIP6 highresmip multimodel ensemble
,”
Geophys. Res. Lett.
47
,
e2020GL088662
(
2020
).
6.
E. N.
Lorenz
, “
Can chaos and intransitivity lead to interannual variability?
,”
Tellus A
42
,
378
389
(
2022
).
7.
S.
Schubert
and
V.
Lucarini
, “
Covariant lyapunov vectors of a quasi-geostrophic baroclinic model: Analysis of instabilities and feedbacks
,”
Q. J. R. Meteorol. Soc.
141
,
3040
3055
(
2015
).
8.
C. J.
Muller
and
D. M.
Romps
, “
Acceleration of tropical cyclogenesis by self-aggregation feedbacks
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
2930
2935
(
2018
).
9.
D.
Faranda
,
G.
Messori
, and
P.
Yiou
, “
Dynamical proxies of north atlantic predictability and extremes
,”
Sci. Rep.
7
,
41278
(
2017
).
10.
G.
Messori
,
R.
Caballero
, and
D.
Faranda
, “
A dynamical systems approach to studying midlatitude weather extremes
,”
Geophys. Res. Lett.
44
,
3346
3354
, https://doi.org/10.1002/2017GL072879 (
2017
).
11.
A.
Hochman
,
P.
Alpert
,
T.
Harpaz
,
H.
Saaroni
, and
G.
Messori
, “
A new dynamical systems perspective on atmospheric predictability: Eastern mediterranean weather regimes as a case study
,”
Sci. Adv.
5
,
eaau0936
(
2019
).
12.
A.
Hochman
,
G.
Messori
,
J. F.
Quinting
,
J. G.
Pinto
, and
C. M.
Grams
, “
Do Atlantic-European weather regimes physically exist?
,”
Geophys. Res. Lett.
48
,
e2021GL095574
, https://doi.org/10.1029/2021GL095574 (
2021
).
13.
M.
Brunetti
,
J.
Kasparian
, and
C.
Vérard
, “
Co-existing climate attractors in a coupled aquaplanet
,”
Clim. Dyn.
53
,
6293
6308
(
2019
).
14.
G.
Messori
and
D.
Faranda
, “
Technical note: Characterising and comparing different palaeoclimates with dynamical systems theory
,”
Clim. Past Discuss.
17
,
545
563
(
2021
).
15.
A.
Gualandi
,
J.-P.
Avouac
,
S.
Michel
, and
D.
Faranda
, “
The predictable chaos of slow earthquakes
,”
Sci. Adv.
6
,
eaaz5548
(
2020
).
16.
D.
Faranda
,
M. C.
Alvarez-Castro
,
G.
Messori
,
D.
Rodrigues
, and
P.
Yiou
, “
The Hammam effect or how a warm ocean enhances large scale atmospheric predictability
,”
Nat. Commun.
10
,
1
7
(
2019
).
17.
A.
Crisanti
,
M.
Falcioni
,
A.
Vulpiani
, and
G.
Paladin
, “
Lagrangian chaos: Transport, mixing and diffusion in fluids
,”
La Riv. Nuovo Cimento (1978–1999)
14
,
1
80
(
1991
).
18.
A.
Vulpiani
,
Chaos: From Simple Models to Complex Systems
(
World Scientific
,
2010
), Vol. 17.
19.
C. W.
Landsea
and
J. L.
Franklin
, “
Atlantic hurricane database uncertainty and presentation of a new database format
,”
Mon. Weather Rev.
141
,
3576
3592
(
2013
).
20.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
S.
Hirahara
,
A.
Horányi
,
J.
Muñoz-Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
,
D.
Schepers
et al., “
The ERA5 global reanalysis
,”
Q. J. R. Meteorol. Soc.
146
,
1999
2049
(
2020
).
21.
J. B.
Elsner
, “
Tracking hurricanes
,”
Bull. Am. Meteorol. Soc.
84
,
353
356
(
2003
).
22.
J. D.
Möller
and
M. T.
Montgomery
, “
Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model
,”
J. Atmos. Sci.
57
,
3366
3387
(
2000
).
23.
L. J.
Shapiro
, “
Potential vorticity asymmetries and tropical cyclone evolution in a moist three-layer model
,”
J. Atmos. Sci.
57
,
3645
3662
(
2000
).
24.
L. J.
Shapiro
and
J. L.
Franklin
, “
Potential vorticity in hurricane gloria
,”
Mon. Weather Rev.
123
,
1465
1475
(
1995
).
25.
S. A.
Hausman
,
K. V.
Ooyama
, and
W. H.
Schubert
, “
Potential vorticity structure of simulated hurricanes
,”
J. Atmos. Sci.
63
,
87
108
(
2006
).
26.
K.
Tory
,
N.
Davidson
, and
M.
Montgomery
, “
Prediction and diagnosis of tropical cyclone formation in an NWP system. Part III: Diagnosis of developing and nondeveloping storms
,”
J. Atmos. Sci.
64
,
3195
3213
(
2007
).
27.
T.-Y.
Lee
,
C.-C.
Wu
, and
R.
Rios-Berrios
, “
The role of low-level flow direction on tropical cyclone intensity changes in a moderate-sheared environment
,”
J. Atmos. Sci.
78
,
2859
2877
(
2021
).
28.
A. R.
Zhai
and
J. H.
Jiang
, “
Dependence of US hurricane economic loss on maximum wind speed and storm size
,”
Environ. Res. Lett.
9
,
064019
(
2014
).
29.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
Hitting time statistics and extreme value theory
,”
Probab. Theory Relat. Fields
147
,
675
710
(
2010
).
30.
V.
Lucarini
,
D.
Faranda
, and
J.
Wouters
, “
Universal behaviour of extreme value statistics for selected observables of dynamical systems
,”
J. Stat. Phys.
147
,
63
73
(
2012
).
31.
V.
Lucarini
,
D.
Faranda
,
J. M. M.
de Freitas
,
M.
Holland
,
T.
Kuna
,
M.
Nicol
,
M.
Todd
,
S.
Vaienti
et al.,
Extremes and Recurrence in Dynamical Systems
(
John Wiley & Sons
,
2016
).
32.
N. R.
Moloney
,
D.
Faranda
, and
Y.
Sato
, “
An overview of the extremal index
,”
Chaos
29
,
022101
(
2019
).
33.
M.
Süveges
, “
Likelihood estimation of the extremal index
,”
Extremes
10
,
41
55
(
2007
).
34.
N.
Sarkar
and
B. B.
Chaudhuri
, “
An efficient differential box-counting approach to compute fractal dimension of image
,”
IEEE Trans. Syst. Man Cybern.
24
,
115
120
(
1994
).
35.
F. M. E.
Pons
,
G.
Messori
,
M. C.
Alvarez-Castro
, and
D.
Faranda
, “
Sampling hyperspheres via extreme value theory: Implications for measuring attractor dimensions
,”
J. Stat. Phys.
179
,
1698
1717
(
2020
).
36.
D.
Faranda
and
S.
Vaienti
, “
Correlation dimension and phase space contraction via extreme value theory
,”
Chaos
28
,
041103
(
2018
).
37.
L.-S.
Young
, “
Dimension, entropy and lyapunov exponents
,”
Ergod. Theory Dyn. Syst.
2
,
109
124
(
1982
).
38.
T. W.
Anderson
, “
On the distribution of the two-sample cramer-von mises criterion
,”
Ann. Math. Stat.
33
,
1148
1159
(
1962
).
39.
J.
Molinari
,
D.
Knight
,
M.
Dickinson
,
D.
Vollaro
, and
S.
Skubis
, “
Potential vorticity, easterly waves, and Eastern Pacific tropical cyclogenesis
,”
Mon. Weather Rev.
125
,
2699
2708
(
1997
).
40.
F.
Sanders
, “
Explosive cyclogenesis in the west-central north atlantic ocean, 1981–84. Part I: Composite structure and mean behavior
,”
Mon. Weather Rev.
114
,
1781
1794
(
1986
).
41.
R.
Klein
, “
Scale-dependent models for atmospheric flows
,”
Annu. Rev. Fluid Mech.
42
,
249
274
(
2010
).
42.
A. V.
Soloviev
,
R.
Lukas
,
M. A.
Donelan
,
B. K.
Haus
, and
I.
Ginis
, “
Is the state of the air-sea interface a factor in rapid intensification and rapid decline of tropical cyclones?
,”
J. Geophys. Res.: Oceans
122
,
10174
10183
(https://doi.org/10.1002/2017JC013435
2017
).
43.
C.-Y.
Lee
,
M. K.
Tippett
,
A. H.
Sobel
, and
S. J.
Camargo
, “
Rapid intensification and the bimodal distribution of tropical cyclone intensity
,”
Nat. Commun.
7
,
1
5
(
2016
).
44.
M.
Ghil
,
M. D.
Chekroun
, and
E.
Simonnet
, “
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
,”
Physica D
237
,
2111
2126
(
2008
).
45.
H. A.
Dijkstra
,
Nonlinear Climate Dynamics
(
Cambridge University Press
,
2013
).
46.
E.-W.
Saw
,
D.
Kuzzay
,
D.
Faranda
,
A.
Guittonneau
,
F.
Daviaud
,
C.
Wiertel-Gasquet
,
V.
Padilla
, and
B.
Dubrulle
, “
Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow
,”
Nat. Commun.
7
,
1
8
(
2016
).
47.
J.
Grover
and
A.
Wittig
, “
Black hole shadows and invariant phase space structures
,”
Phys. Rev. D
96
,
024045
(
2017
).
48.
F.
Bouchet
,
J.
Laurie
, and
O.
Zaboronski
, “
Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional euler equations
,”
J. Stat. Phys.
156
,
1066
1092
(
2014
).
49.
V.
Lucarini
and
T.
Bódai
, “
Edge states in the climate system: Exploring global instabilities and critical transitions
,”
Nonlinearity
30
,
R32
(
2017
).
50.
F.
Ragone
,
J.
Wouters
, and
F.
Bouchet
, “
Computation of extreme heat waves in climate models using a large deviation algorithm
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
24
29
(
2018
).
51.
D.
Faranda
,
G.
Messori
,
S.
Bourdin
,
M.
Vrac
,
S.
Thao
,
J.
Riboldi
,
S.
Fromang
, and
P.
Yiou
, “Correcting biases in tropical cyclone intensities in low-resolution datasets using dynamical systems metrics,” see https://hal.archives-ouvertes.fr/hal-03631098 (2022).
You do not currently have access to this content.