We consider the general model for dynamical systems defined on a simplicial complex. We describe the conjugacy classes of these systems and show how symmetries in a given simplicial complex manifest in the dynamics defined thereon, especially with regard to invariant subspaces in the dynamics.

1.
A.-L.
Barabási
et al.,
Network Science
(
Cambridge University Press
,
2016
).
2.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
(
4–5
),
175
308
(
2006
).
3.
M.
Newman
,
Networks
(
Oxford University Press
,
2018
).
4.
M.
Newman
,
A.-L.
Barabási
, and
D. J.
Watts
,
The Structure and Dynamics of Networks
(
Princeton University Press
,
2006
).
5.
M.
Aguiar
,
C.
Bick
, and
A.
Dias
, “Network dynamics with higher-order interactions: Coupled cell hypernetworks for identical cells and synchrony,” arXiv:2201.09379 (2022).
6.
S.
Barbarossa
and
S.
Sardellitti
, “
Topological signal processing over simplicial complexes
,”
IEEE Trans. Signal Process
68
,
2992–3007
(
2020
); available at https://ieeexplore.ieee.org/document/9044758.
7.
D.
Bassett
and
O.
Sporns
, “
Network neuroscience
,”
Nat. Neurosci.
20
(
3
),
353
364
(
2017
).
8.
A. R.
Benson
,
R.
Abebe
,
M. T.
Schaub
,
A.
Jadbabaie
, and
J.
Kleinberg
, “
Simplicial closure and higher-order link prediction
,”
Proc. Natl. Acad. Sci. U.S.A.
115
(
48
),
E11221
E11230
(
2018
).
9.
O.
Courtney
and
G.
Bianconi
, “
Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes
,”
Phys. Rev. E
93
(
6
),
062311
(
2016
).
10.
C.
Curto
, “
What can topology tell us about the neural code?
,”
Bull. Am. Math. Soc.
54
(
1
),
63
78
(
2017
).
11.
C.
Giusti
,
R.
Ghrist
, and
D.
Bassett
, “
Two’s company, three (or more) is a simplex
,”
J. Comput. Neurosci.
41
(
1
),
1
14
(
2016
).
12.
I.
Iacopini
,
G.
Petri
,
A.
Barrat
, and
V.
Latora
, “
Simplicial models of social contagion
,”
Nat. Commun.
10
(
1
),
1
9
(
2019
).
13.
L.
Kanari
,
P.
Dlotko
,
M.
Scolamiero
,
R.
Levi
,
J.
Shillcock
,
K.
Hess
, and
H.
Markram
, “
A topological representation of branching neuronal morphologies
,”
Neuroinformatics
16
(
1
),
3
13
(
2018
).
14.
S.
Klamt
,
U.-U.
Haus
, and
F.
Theis
, “
Hypergraphs and cellular networks
,”
PLoS Comput. Biol.
5
(
5
),
e1000385
(
2009
).
15.
C.
Ladroue
,
S.
Guo
,
K.
Kendrick
, and
J.
Feng
, “
Beyond element-wise interactions: Identifying complex interactions in biological processes
,”
PLoS One
4
(
9
),
e6899
(
2009
).
16.
R.
Lambiotte
,
M.
Rosvall
, and
I.
Scholtes
, “
From networks to optimal higher-order models of complex systems
,”
Nat. Phys.
15
(
4
),
313
320
(
2019
).
17.
A.
Muhammad
and
M.
Egerstedt
, “Control using higher order Laplacians in network topologies,” in Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems (Citeseer, 2006), pp. 1024–1038.
18.
D.
Mulder
and
G.
Bianconi
, “
Network geometry and complexity
,”
J. Stat. Phys.
173
(
3–4
),
783
805
(
2018
).
19.
A.
Patania
,
G.
Petri
, and
F.
Vaccarino
, “
The shape of collaborations
,”
EPJ Data Sci.
6
(
1
),
18
(
2017
).
20.
T.
Roman
,
A.
Nayyeri
,
B. T.
Fasy
, and
R.
Schwartz
, “
A simplicial complex-based approach to unmixing tumor progression data
,”
BMC Bioinf.
16
(
1
),
254
(
2015
).
21.
V.
Salnikov
,
D.
Cassese
, and
R.
Lambiotte
, “
Simplicial complexes and complex systems
,”
Eur. J. Phys.
40
(
1
),
014001
(
2018
).
22.
D. H.
Serrano
,
J.
Hernández-Serrano
, and
D. S.
Gómez
, “
Simplicial degree in complex networks. Applications of topological data analysis to network science
,”
Chaos Solitons Fractals
137
,
109839
(
2020
).
23.
A. E.
Sizemore
,
C.
Giusti
,
A.
Kahn
,
J. M.
Vettel
,
R. F.
Betzel
, and
D. S.
Bassett
, “
Cliques and cavities in the human connectome
,”
J. Comput. Neurosci.
44
(
1
),
115
145
(
2018
).
24.
B. J.
Stolz
,
H. A.
Harrington
, and
M. A.
Porter
, “
Persistent homology of time-dependent functional networks constructed from coupled time series
,”
Chaos
27
(
4
),
047410
(
2017
).
25.
L.
Torres
,
A.
Blevins
,
D.
Bassett
, and
T.
Eliassi-Rad
, “The why, how, and when of representations for complex systems,” arXiv:2006.02870 (2020).
26.
F.
Battiston
,
G.
Cencetti
,
I.
Iacopini
,
V.
Latora
,
M.
Lucas
,
A.
Patania
,
J.-G.
Young
, and
G.
Petri
, “
Networks beyond pairwise interactions: Structure and dynamics
,”
Phys. Rep.
874
,
1
92
(
2020
).
27.
G.
Bianconi
, “Higher-order networks,” in Elements in Structure and Dynamics of Complex Networks (Cambridge University Press, 2021).
28.
M. A.
Porter
, “Nonlinearity + networks: A 2020 vision,” in Emerging Frontiers in Nonlinear Science (Springer, 2020), pp. 131–159.
29.
C.
Berge
,
Hypergraphs: Combinatorics of Finite Sets
(
Elsevier
,
1984
), Vol. 45.
30.
B.
Bollobás
,
Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability
(
Cambridge University Press
,
1986
).
31.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
2002
).
32.
L.-H.
Lim
, “
Hodge Laplacians on graphs
,”
SIAM Rev.
62
(
3
),
685
715
(
2020
).
33.
J. R.
Munkres
,
Elements of Algebraic Topology
(
Addison-Wesley Publishing Company
,
Menlo Park, CA
,
1984
).
34.
M.
Golubitsky
and
I.
Stewart
, “
Nonlinear dynamics of networks: The groupoid formalism
,”
Bull. Am. Math. Soc.
43
(
3
),
305
365
(
2006
).
35.
M.
Golubitsky
,
I.
Stewart
, and
A.
Török
, “
Patterns of synchrony in coupled cell networks with multiple arrows
,”
SIAM J. Appl. Dyn. Syst.
4
(
1
),
78
100
(
2005
).
36.
I.
Stewart
,
M.
Golubitsky
, and
M.
Pivato
, “
Symmetry groupoids and patterns of synchrony in coupled cell networks
,”
SIAM J. Appl. Dyn. Syst.
2
(
4
),
609
646
(
2003
).
37.
A. P. S.
Dias
and
J. S. W.
Lamb
, “
Local bifurcation in symmetric coupled cell networks: Linear theory
,”
Phys. D
223
(
1
),
93
108
(
2006
).
38.
M.
Golubitsky
,
I.
Stewart
,
P.-L.
Buono
, and
J. J.
Collins
, “
Symmetry in locomotor central pattern generators and animal gaits
,”
Nature
401
(
6754
),
693
695
(
1999
).
39.
L.
DeVille
and
E.
Lerman
, “
Modular dynamical systems on networks
,”
J. Eur. Math. Soc.
17
(
12
),
2977
3013
(
2015
).
40.
E.
Nijholt
,
B.
Rink
, and
J.
Sanders
, “
Graph fibrations and symmetries of network dynamics
,”
J. Differ. Equ.
261
(
9
),
4861
4896
(
2016
).
41.
F.
Antoneli
,
A. P. S.
Dias
, and
R. C.
Paiva
, “
Hopf bifurcation in coupled cell networks with interior symmetries
,”
SIAM J. Appl. Dyn. Syst.
7
(
1
),
220
248
(
2008
).
42.
E.
Nijholt
,
B.
Rink
, and
J.
Sanders
, “
Center manifolds of coupled cell networks
,”
SIAM Rev.
61
(
1
),
121
155
(
2019
).
43.
E.
Nijholt
,
B. W.
Rink
, and
S.
Schwenker
, “
Quiver representations and dimension reduction in dynamical systems
,”
SIAM J. Appl. Dyn. Syst.
19
(
4
),
2428
2468
(
2020
).
44.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2013
).
45.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics Vol. 19 (Springer-Verlag, Berlin, 1984).
46.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
47.
W.
Ren
,
R. W.
Beard
, and
E. M.
Atkins
, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the 2005 American Control Conference (IEEE, 2005), pp. 1859–1864.
48.
M.
Aguiar
and
A.
Dias
, “
Synchrony and antisynchrony in weighted networks
,”
SIAM J. Appl. Dyn. Syst.
20
(
3
),
1382
1420
(
2021
).
49.
J. M.
Neuberger
,
N.
Sieben
, and
J. W.
Swift
, “
Synchrony and antisynchrony for difference-coupled vector fields on graph network systems
,”
SIAM J. Appl. Dyn. Syst.
18
(
2
),
904
938
(
2019
).
50.
J.
Guckenheimer
and
P.
Holmes
, “Structurally stable heteroclinic cycles,” in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, 1988), Vol. 103, pp. 189–192.
51.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
52.
E. E.
Sel’Kov
, “
Self-oscillations in glycolysis 1. A simple kinetic model
,”
Eur. J. Biochem.
4
(
1
),
79
86
(
1968
).
You do not currently have access to this content.