We consider the general model for dynamical systems defined on a simplicial complex. We describe the conjugacy classes of these systems and show how symmetries in a given simplicial complex manifest in the dynamics defined thereon, especially with regard to invariant subspaces in the dynamics.
REFERENCES
1.
2.
S.
Boccaletti
, V.
Latora
, Y.
Moreno
, M.
Chavez
, and D.-U.
Hwang
, “Complex networks: Structure and dynamics
,” Phys. Rep.
424
(4–5
), 175
–308
(2006
). 3.
4.
M.
Newman
, A.-L.
Barabási
, and D. J.
Watts
, The Structure and Dynamics of Networks
(Princeton University Press
, 2006
).5.
M.
Aguiar
, C.
Bick
, and A.
Dias
, “Network dynamics with higher-order interactions: Coupled cell hypernetworks for identical cells and synchrony,” arXiv:2201.09379 (2022).6.
S.
Barbarossa
and S.
Sardellitti
, “Topological signal processing over simplicial complexes
,” IEEE Trans. Signal Process
68
, 2992–3007
(2020
); available at https://ieeexplore.ieee.org/document/9044758.7.
D.
Bassett
and O.
Sporns
, “Network neuroscience
,” Nat. Neurosci.
20
(3
), 353
–364
(2017
). 8.
A. R.
Benson
, R.
Abebe
, M. T.
Schaub
, A.
Jadbabaie
, and J.
Kleinberg
, “Simplicial closure and higher-order link prediction
,” Proc. Natl. Acad. Sci. U.S.A.
115
(48
), E11221
–E11230
(2018
). 9.
O.
Courtney
and G.
Bianconi
, “Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes
,” Phys. Rev. E
93
(6
), 062311
(2016
). 10.
C.
Curto
, “What can topology tell us about the neural code?
,” Bull. Am. Math. Soc.
54
(1
), 63
–78
(2017
). 11.
C.
Giusti
, R.
Ghrist
, and D.
Bassett
, “Two’s company, three (or more) is a simplex
,” J. Comput. Neurosci.
41
(1
), 1
–14
(2016
). 12.
I.
Iacopini
, G.
Petri
, A.
Barrat
, and V.
Latora
, “Simplicial models of social contagion
,” Nat. Commun.
10
(1
), 1
–9
(2019
). 13.
L.
Kanari
, P.
Dlotko
, M.
Scolamiero
, R.
Levi
, J.
Shillcock
, K.
Hess
, and H.
Markram
, “A topological representation of branching neuronal morphologies
,” Neuroinformatics
16
(1
), 3
–13
(2018
). 14.
S.
Klamt
, U.-U.
Haus
, and F.
Theis
, “Hypergraphs and cellular networks
,” PLoS Comput. Biol.
5
(5
), e1000385
(2009
). 15.
C.
Ladroue
, S.
Guo
, K.
Kendrick
, and J.
Feng
, “Beyond element-wise interactions: Identifying complex interactions in biological processes
,” PLoS One
4
(9
), e6899
(2009
). 16.
R.
Lambiotte
, M.
Rosvall
, and I.
Scholtes
, “From networks to optimal higher-order models of complex systems
,” Nat. Phys.
15
(4
), 313
–320
(2019
). 17.
A.
Muhammad
and M.
Egerstedt
, “Control using higher order Laplacians in network topologies,” in Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems (Citeseer, 2006), pp. 1024–1038.18.
D.
Mulder
and G.
Bianconi
, “Network geometry and complexity
,” J. Stat. Phys.
173
(3–4
), 783
–805
(2018
). 19.
A.
Patania
, G.
Petri
, and F.
Vaccarino
, “The shape of collaborations
,” EPJ Data Sci.
6
(1
), 18
(2017
). 20.
T.
Roman
, A.
Nayyeri
, B. T.
Fasy
, and R.
Schwartz
, “A simplicial complex-based approach to unmixing tumor progression data
,” BMC Bioinf.
16
(1
), 254
(2015
). 21.
V.
Salnikov
, D.
Cassese
, and R.
Lambiotte
, “Simplicial complexes and complex systems
,” Eur. J. Phys.
40
(1
), 014001
(2018
). 22.
D. H.
Serrano
, J.
Hernández-Serrano
, and D. S.
Gómez
, “Simplicial degree in complex networks. Applications of topological data analysis to network science
,” Chaos Solitons Fractals
137
, 109839
(2020
). 23.
A. E.
Sizemore
, C.
Giusti
, A.
Kahn
, J. M.
Vettel
, R. F.
Betzel
, and D. S.
Bassett
, “Cliques and cavities in the human connectome
,” J. Comput. Neurosci.
44
(1
), 115
–145
(2018
). 24.
B. J.
Stolz
, H. A.
Harrington
, and M. A.
Porter
, “Persistent homology of time-dependent functional networks constructed from coupled time series
,” Chaos
27
(4
), 047410
(2017
). 25.
L.
Torres
, A.
Blevins
, D.
Bassett
, and T.
Eliassi-Rad
, “The why, how, and when of representations for complex systems,” arXiv:2006.02870 (2020).26.
F.
Battiston
, G.
Cencetti
, I.
Iacopini
, V.
Latora
, M.
Lucas
, A.
Patania
, J.-G.
Young
, and G.
Petri
, “Networks beyond pairwise interactions: Structure and dynamics
,” Phys. Rep.
874
, 1
–92
(2020
). 27.
G.
Bianconi
, “Higher-order networks,” in Elements in Structure and Dynamics of Complex Networks (Cambridge University Press, 2021).28.
M. A.
Porter
, “Nonlinearity + networks: A 2020 vision,” in Emerging Frontiers in Nonlinear Science (Springer, 2020), pp. 131–159.29.
30.
B.
Bollobás
, Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability
(Cambridge University Press
, 1986
).31.
32.
L.-H.
Lim
, “Hodge Laplacians on graphs
,” SIAM Rev.
62
(3
), 685
–715
(2020
). 33.
J. R.
Munkres
, Elements of Algebraic Topology
(Addison-Wesley Publishing Company
, Menlo Park, CA
, 1984
).34.
M.
Golubitsky
and I.
Stewart
, “Nonlinear dynamics of networks: The groupoid formalism
,” Bull. Am. Math. Soc.
43
(3
), 305
–365
(2006
). 35.
M.
Golubitsky
, I.
Stewart
, and A.
Török
, “Patterns of synchrony in coupled cell networks with multiple arrows
,” SIAM J. Appl. Dyn. Syst.
4
(1
), 78
–100
(2005
). 36.
I.
Stewart
, M.
Golubitsky
, and M.
Pivato
, “Symmetry groupoids and patterns of synchrony in coupled cell networks
,” SIAM J. Appl. Dyn. Syst.
2
(4
), 609
–646
(2003
). 37.
A. P. S.
Dias
and J. S. W.
Lamb
, “Local bifurcation in symmetric coupled cell networks: Linear theory
,” Phys. D
223
(1
), 93
–108
(2006
). 38.
M.
Golubitsky
, I.
Stewart
, P.-L.
Buono
, and J. J.
Collins
, “Symmetry in locomotor central pattern generators and animal gaits
,” Nature
401
(6754
), 693
–695
(1999
). 39.
L.
DeVille
and E.
Lerman
, “Modular dynamical systems on networks
,” J. Eur. Math. Soc.
17
(12
), 2977
–3013
(2015
). 40.
E.
Nijholt
, B.
Rink
, and J.
Sanders
, “Graph fibrations and symmetries of network dynamics
,” J. Differ. Equ.
261
(9
), 4861
–4896
(2016
). 41.
F.
Antoneli
, A. P. S.
Dias
, and R. C.
Paiva
, “Hopf bifurcation in coupled cell networks with interior symmetries
,” SIAM J. Appl. Dyn. Syst.
7
(1
), 220
–248
(2008
). 42.
E.
Nijholt
, B.
Rink
, and J.
Sanders
, “Center manifolds of coupled cell networks
,” SIAM Rev.
61
(1
), 121
–155
(2019
). 43.
E.
Nijholt
, B. W.
Rink
, and S.
Schwenker
, “Quiver representations and dimension reduction in dynamical systems
,” SIAM J. Appl. Dyn. Syst.
19
(4
), 2428
–2468
(2020
). 44.
R. A.
Horn
and C. R.
Johnson
, Matrix Analysis
, 2nd ed. (Cambridge University Press
, Cambridge
, 2013
).45.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics Vol. 19 (Springer-Verlag, Berlin, 1984).46.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, 2003
), Vol. 12.47.
W.
Ren
, R. W.
Beard
, and E. M.
Atkins
, “A survey of consensus problems in multi-agent coordination,” in Proceedings of the 2005 American Control Conference (IEEE, 2005), pp. 1859–1864.48.
M.
Aguiar
and A.
Dias
, “Synchrony and antisynchrony in weighted networks
,” SIAM J. Appl. Dyn. Syst.
20
(3
), 1382
–1420
(2021
). 49.
J. M.
Neuberger
, N.
Sieben
, and J. W.
Swift
, “Synchrony and antisynchrony for difference-coupled vector fields on graph network systems
,” SIAM J. Appl. Dyn. Syst.
18
(2
), 904
–938
(2019
). 50.
J.
Guckenheimer
and P.
Holmes
, “Structurally stable heteroclinic cycles,” in Mathematical Proceedings of the Cambridge Philosophical Society (Cambridge University Press, 1988), Vol. 103, pp. 189–192.51.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
(2
), 130
–141
(1963
). 52.
E. E.
Sel’Kov
, “Self-oscillations in glycolysis 1. A simple kinetic model
,” Eur. J. Biochem.
4
(1
), 79
–86
(1968
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.