The system of two resources R1 and R2 and one consumer C is investigated within the Rosenzweig–MacArthur model with a Holling type II functional response. The rates of consumption of particular resources are normalized as to keep their sum constant. Dynamic switching is introduced as to increase the variable C in a process of finite speed. The space of parameters where both resources coexist is explored numerically. The results indicate that oscillations of C and mutually synchronized Ri, which appear equal for the rates of consumption, are destabilized when these rates are modified. Then, the system is driven to one of fixed points or to a limit cycle with a much smaller amplitude. As a consequence of symmetry between the resources, the consumer cannot change the preferred resource once it is chosen.

1.
A. J.
Lotka
,
Elements of Physical Biology
(
Williams and Wilkins
,
1925
).
2.
V.
Volterra
, “
Variazioni e fluttuazioni del numero d’individui in specie animali conviventi
,”
Mem. Acad. Lincei Roma
2
,
31
113
(
1926
).
3.
G.
Santangelo
and
L.
Bramanti
, “
Ecology through time, an overview
,”
Riv. Biol.
99
,
395
424
(
2006
).
4.
From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems, edited by N. Rooney, K. S. McCann, and D. L. G. Noakes (Springer, Dordrecht, 2007).
5.
M.
Iannelli
and
A.
Pugliese
,
An Introduction to Mathematical Population Dynamics: Along the Trail of Volterra and Lotka
(
Springer
,
2014
).
6.
M. L.
Rosenzweig
and
R. H.
MacArthur
, “
Graphical representation and stability conditions of predator-prey interactions
,”
Am. Nat.
97
(
895
),
209
223
(
1963
).
7.
T.
Banerjee
,
P. S.
Dutta
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera patterns induced by distance-dependent power-law coupling in ecological networks
,”
Phys. Rev. E
94
,
032206
(
2016
).
8.
N. R.
Smith
and
B.
Meerson
, “
Extinction of oscillating populations
,”
Phys. Rev. E
93
,
032109
(
2016
).
9.
A.
Gupta
,
T.
Banerjee
, and
P. S.
Dutta
, “
Increased persistence via asynchrony in oscillating ecological populations with long-range interaction
,”
Phys. Rev. E
96
,
042202
(
2017
).
10.
K.
Grunert
,
H.
Holden
,
E. R.
Jakobsen
, and
N. C.
Stenseth
, “
Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig–MacArthur predator–prey model
,”
Proc. Natl. Acad. Sci. U.S.A.
118
(
4
),
e2017463118
(
2021
).
11.
J. D.
Murray
,
Mathematical Biology I: An Introduction, Interdisciplinary Applied Mathematics
(
Springer-Verlag
,
1993
).
12.
V.
Krivan
, “
Optimal foraging and predator-prey dynamics
,”
Theor. Popul. Biol.
49
,
265
290
(
1996
).
13.
E.
Sanchez-Palencia
and
J.-P.
Francoise
, “
Topological remarks and new examples of persistence of diversity in biological dynamics
,”
Discrete Continuous Dyn. Syst. Ser.
12
(
6
),
1775
1789
(
2019
).
14.
D.
Savitri
,
A.
Suryanto
, and
W. M.
Kusumawinahyu
, and
Abadi
, “
Dynamics of two preys one predator system with competition between preys
,”
J. Phys. Conf. Series
1562
,
012010
(
2020
).
15.
K.
Manna
,
V.
Volpert
, and
M.
Banerjee
, “
Dynamics of a diffusive two-prey-one-predator model with nonlocal intra-specific competition for both the prey species
,”
Mathematics
8
,
101
(
2020
).
16.
A.
Yamauchi
,
Y.
Ikegawa
,
T.
Ohgushi
, and
T.
Namba
, “
Density regulation of co-occurring herbivores via two indirect effects mediated by biomass and non-specific induced plant defenses
,”
Theor. Ecol.
14
,
41
55
(
2021
).
17.
M.
Koen-Alonso
, “A process-oriented approach to the multispecies functional response,” in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems, edited by N. Rooney, K. S. McCann and D. L. G. Noakes (Springer, Dordrecht, 2007), pp. 1–36.
18.
V.
Krivan
and
A.
Sikder
, “
Optimal foraging and predator-prey dynamics II
,”
Theor. Popul. Biol.
55
,
111
126
(
1999
).
19.
V.
Krivan
and
J.
Eisner
, “
Optimal foraging and predator-prey dynamics III
,”
Theor. Popul. Biol.
63
,
269
279
(
2003
).
20.
B.
Barman
and
B.
Ghosh
, “
Dynamics of a spatially coupled model with delayed prey dispersal
,”
Int. J. Modell. Simul.
42
,
400–414
(
2022
).
21.
B.
Barman
and
B.
Ghosh
, “
Role of time delay and harvesting in some predator–prey communities with different functional responses and intra-species competition
,”
Int. J. Modell. Simul.
(published online 2021).
22.
Z.
Hajian-Forooshani
and
J.
Vandermeer
, “
Viewing communities as coupled oscillators: Elementary forms from Lotka and Volterra to Kuramoto
,”
Theoretical Ecology
14
(
12
),
247
254
(
2021
).
23.
E. A.
Coddington
and
N.
Levinson
,
Theory of Ordinary Differential Equations
(
McGraw-Hill
,
1955
).
24.
W.
Nolting
,
Theoretical Physics 8: Statistical Physics
(
Springer
,
Cham
,
2018
), p. 308.
25.
J.
Claus
,
M.
Ptashnyk
,
A.
Bohmann
, and
A.
Chavarria-Krauser
, “
Global Hopf bifurcation in the ZIP regulatory system
,”
J. Math. Biol.
71
,
795
(
2015
).
26.
M. L.
Rosenzweig
, “
Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time
,”
Science, New Series
171
(
3969
),
385
387
(
1971
).
27.
G. I.
Hagstrom
and
S. A.
Levin
, “
Marine ecosystems as complex adaptive systems: Emergent patterns, critical transitions, and public goods
,”
Ecosystems
20
,
458
476
(
2017
).
28.
Y.
Zhang
, “
China’s evolution toward an authoritarian market economy—A predator–prey evolutionary model with intelligent design
,”
Public Choice
151
,
271
287
(
2012
).
29.
H.
Weinmann
,
K.
Kułakowski
, and
A.
Borzì
, “
Ecosystem models and social balance from a synchronization perspective
,”
Int. J. Mod. Phys. C
33
,
2250064
(
2022
).
30.
B.
Verplanken
and
W.
Wood
, “
Interventions to break and create consumer habits
,”
J. Public Policy Mark.
25
,
90
103
(
2006
).
31.
R.
Habib
,
K.
White
,
D. J.
Hardisty
, and
J.
Zhao
, “
Shifting consumer behavior to address climate change
,”
Curr. Opin. Psychol.
42
,
108
113
(
2021
).
You do not currently have access to this content.